Nathaniel Mooney Mechanical Dr. William Bahnfleth

Broad Institute Expansion:

75 Ames Street

4/3/2012

Cambridge, Massachusetts

Final Report:

[Mechanical Systems
Alternate Evaluation]

Table of Contents

Executive Summary	7
Acknowledgements	8
Building Overview	g
Site	
Architecture	
Envelope	
Structure	11
Electrical	11
Lighting	
Mechanical System Overview	11
Mechanical System Design Requirements	12
Design Objectives	12
Design Conditions	13
Exterior Design Conditions	
Interior Design Conditions	
Ventilation	14
Heating and Cooling Loads	15
Heating	
Cooling	
Annual Energy Consumption & Cost Information	16
Mechanical Operation and Schematics	17
Major Equipment	
Airside	
Water Side	
ASHRAE Standard 62.1	28
Section 5: Systems and Equipment	28
Section 6: Ventilation Rate Procedure Analysis	35
ASHRAE Standard 62.1 Summary	36
ASHRAE Standard 90.1	37
Section 5 Building Envelope	37
Section 6 Heating, Ventilating and Air Conditioning	39
6.2 Compliance Paths	39
6.4 Mandatory Provisions	39
6.5 Prescriptive Path	39
6.7 Submittals	41
Section 7 Service Water Heating	41
7.4 Mandatory Provisions	41
Section 8 Power	41
1	1

Section 9 Lighting	41
Section 10 Other Equipment	42
ASHRAE Standard 90.1 Summary	43
LEED Analysis	4 3
Overall Evaluation	60
Alternatives Considered	60
Solar Thermal Heating	60
Rain Water Collection	61
Return Air from offices to be used	61
Depth I Laboratory Demand Controlled Ventilation Alternate	61
Objective	61
Schematic	62
Design Considerations	62
Energy Usage Estimates	63
Operating Costs	66
Emissions Estimate	66
Summary	67
Depth II: Chilled Beams	67
Objectives	67
Design Considerations	67
Active vs. Passive	67
Pipe Arrangement	68
Sizing and Selection	69
Airside Summary	72
Waterside Summary	74
Chilled Water System	74
Chilled Water Pump Sizing	75
System Controls	77
Energy Model	78
Energy Analysis	79
Cost Analysis	81
First Cost	81
Life Cycle Cost	82
Emissions Reduction	82
Summary	83
Depth III: Chilled Beams & Aircuity's Demand Controlled Ventilation	83
Objectives	83
Design Considerations	83
Energy Usage Estimates	82
First Cost	85
	İ

Figure 7: Typical exhaust air handling unit flow diagram	
Figure 3: Street front view 2 Figure 6: Typical air handling unit flow diagram	
Figures and Tables Figure 1: A look at the location of 75 Ames Street in Cambridge (courtesy of ELKUS MANFREDI ARC Figure 2: Street front View 1	10
Appendix I: Chilled Water Pump Selection	162
Appendix H: Chilled Beam Selections	
Appendix G: Schedules	
Appendix F: Labs To Aircuity Optinet System	145
Appendix E: EQc7.1 01 Detailed Narrative from BR+A	142
Appendix D: IEQc5 Indoor Chemical & Pollutant Source Control	141
Appendix C: EAc4 Enhanced Refrigerant Management	
Appendix B: LEED 2009 Checklist Construction and Major Renovations	
Appendix A: ASHRAE 62.1 Ventilation Compliance Spreadsheet	
Works Cited	
Conclusion:	
Girder Design:	
Beam Design:	
Design Calculations	
Design	
Introduction	
Breadth II: Structural	94
Summary	94
Option 3	
Option 2	
Option 1	
Design: Electrical	
Introduction	
Breadth I: Electrical/ Lighting	
Summary	86
Emissions	
Lifecycle	85

Figure 8: CHILLER 1, 2, &3 FLOW DIAGRAM	22
Figure 9: CHILLER 4 & 5 FLOW DIAGRAM	23
Figure 10: Hot Water Boiler Flow Diagram	26
Figure 11: Hot Water Condensing Boiler Flow Diagram	27
Figure 14: Duct Access Doors Detail (courtesy BR+A)	31
Figure 15 : Climate Zones for the United States (ASHRAE)	37
Figure 16: Aircuity Schematic courtesy of Aircuity	62
Figure 17: VAV vs. Aircuity DCV Electricity Usage	65
Figure 18: Aircuity Optinet DCV Electrical Breakdown	65
Figure 19: VAV vs. Aircuity Optinet DCV Gas consumption comparison	65
Figure 20: Passive Chilled Beam Schematic Courtesy of PRICE	68
Figure 21: Active Chilled Beam Schematic Courtesy of PRICE	68
Figure 22: 2-Pipe vs. 4-Pipe Arrangement Courtesy of PRICE	69
Figure 23: Typical Office Room	69
Figure 24: Chilled Water Supply Schematic	75
Figure 25: Bell and Gossett Pump Selection Graph	76
Figure 26: Chilled Water Pump Curve	77
Figure 27: Chilled Beams Chilled Water Piping Controls	78
Figure 28: Original Vs. Chilled Beams Electricity usage	80
Figure 29: Original Vs. Chilled beams Gas Usage	80
Figure 30: Chilled Beams Electricity Usage Breakdown	81
Figure 31: Original Lighting Layout & Figure 32: Rendered Original Lighting Layout	90
Figure 33: Lighting Layout Option 1 & Figure 34: Rendered Lighting Layout 1	91
Figure 35: Rendered Lighting Layout Original Option 2	91
rigure 33. Kendered Lighting Layout Original Option 2	
Figure 36: Option 2 Lighting Layout & Figure 37: Option 2 Lighting Elevation Rendering	
	92
Figure 36: Option 2 Lighting Layout & Figure 37: Option 2 Lighting Elevation Rendering	92 92
Figure 36: Option 2 Lighting Layout & Figure 37: Option 2 Lighting Elevation Rendering Figure 38: Option 2 Lighting Plan Rendering	92 92 93
Figure 36: Option 2 Lighting Layout & Figure 37: Option 2 Lighting Elevation Rendering Figure 38: Option 2 Lighting Plan Rendering Figure 39: Option 3 Lighting Layout & Figure 40: Option 3 Lighting Plan Rendering	92 92 93
Figure 36: Option 2 Lighting Layout & Figure 37: Option 2 Lighting Elevation Rendering Figure 38: Option 2 Lighting Plan Rendering Figure 39: Option 3 Lighting Layout & Figure 40: Option 3 Lighting Plan Rendering Figure 41: Option 3 Lighting Elevation Rendering	92 93 93 93
Figure 36: Option 2 Lighting Layout & Figure 37: Option 2 Lighting Elevation Rendering Figure 38: Option 2 Lighting Plan Rendering	92 93 93 95
Figure 36: Option 2 Lighting Layout & Figure 37: Option 2 Lighting Elevation Rendering Figure 38: Option 2 Lighting Plan Rendering	9293939595
Figure 36: Option 2 Lighting Layout & Figure 37: Option 2 Lighting Elevation Rendering	
Figure 36: Option 2 Lighting Layout & Figure 37: Option 2 Lighting Elevation Rendering	92939595969697
Figure 36: Option 2 Lighting Layout & Figure 37: Option 2 Lighting Elevation Rendering	
Figure 36: Option 2 Lighting Layout & Figure 37: Option 2 Lighting Elevation Rendering	92 93 95 95 96 98 98 98
Figure 36: Option 2 Lighting Layout & Figure 37: Option 2 Lighting Elevation Rendering	92 93 93 95 95 96 97 98 98 99
Figure 36: Option 2 Lighting Layout & Figure 37: Option 2 Lighting Elevation Rendering	92 93 93 95 96 97 98 99 99 99 99 99
Figure 36: Option 2 Lighting Layout & Figure 37: Option 2 Lighting Elevation Rendering	92 93 93 95 96 97 98 99 99 99 99 99
Figure 36: Option 2 Lighting Layout & Figure 37: Option 2 Lighting Elevation Rendering	92 93 95 96 97 98 98 99 100 101
Figure 36: Option 2 Lighting Layout & Figure 37: Option 2 Lighting Elevation Rendering	9293939597989999999990100101102
Figure 36: Option 2 Lighting Layout & Figure 37: Option 2 Lighting Elevation Rendering	92929395969798999899100101102
Figure 36: Option 2 Lighting Layout & Figure 37: Option 2 Lighting Elevation Rendering	929293959697989990100101102
Figure 36: Option 2 Lighting Layout & Figure 37: Option 2 Lighting Elevation Rendering	92929395969798999990100101102
Figure 36: Option 2 Lighting Layout & Figure 37: Option 2 Lighting Elevation Rendering	929293959697989998991001011021414
Figure 36: Option 2 Lighting Layout & Figure 37: Option 2 Lighting Elevation Rendering	929293959697989999100101102141414

Table 11: Centrifugal Chillers	20
Table 12: Chilled Water and Condenser Water Pumps	20
Table 13: Plate and Frame Heat Exchanger	21
Table 14: Cooling Towers	21
Table 15: Hot Water Boilers	24
Table 16: Hot water Condernsing Boilers	24
Table 17:Hot water Pumps	25
Table 18: Insulation For Piping Ductwork and Equipment (courtesy BR+A)	32
Table 19: Air Supplied To Each Floor	35
Table 20: Ventilation Compliance Summary	37
Table 21:Building Envelope Requirements	38
Table 22:Vertical Fenestration Area	38
Table 23:Fan Power Limitation Compliance	40
Table 24:Space-by-Space LPD Compliance	42
Table 25: Baseline Condition for Water Reduction	47
Table 26: Low Emitting Materials-Adhesives and Sealants	55
Table 27: Low Emitting Materials- Areosol Adhesives and Sealants	55
Table 28: Trane Trace 700 DCV Inputs	63
Table 29: DCV Annual Energy Cost Comparison	64
Table 30: Original System vs. DCV Energy Usage	64
Table 31: 10 Year Life Cycle Cost Compared To VAV	66
Table 32: Aircuity Optinet DCV Environmental Impact Compared to Original	66
Table 33: 12" 2 Way 4 Pipe Active Chilled Beams Performance Data Courtesy Of PRICE HVAC	72
Table 34: Supply Air Comparison for Original System and Chilled Beams	73
Table 35: Air Handling Units Redesigned Supply For Chilled Beams System	73
Table 36: New Fan Sizing	74
Table 37: Chilled Water Piping For Chilled Beams GPM, Size and Head	76
Table 38: Trace Inputs for Chilled Beams	
Table 39: Utility Costs	79
Table 40: Chilled Beams Energy Cost Analysis	79
Table 41: Chilled Beam Cost Analysis	82
Table 42: Chilled Beams 10 Year Cost Analysis	82
Table 43: Environmental Impact of Chilled Beams	83
Table 44: Trace 700 Inputs DCV & Aircuity	84
Table 45: DCV & Chilled Beams Energy Usage	85
Table 46: DCV & Chilled Beams 10 Year Lifecycle & Payback	85
Table 47: DCV & Chilled Beams Environmental Impact	86
Table 48: New Motor Wiring, Circuit Breaker, Starter and Disconnect Schedule	89
Table 49: Surface Reflectance's	89

75 AMES STREET

Cambridge, Massachusetts

NATHANIEL MOONEY
ARCHITECTURAL ENGINEERING
MECHANICAL OPTION

Building Type - Science and Technology

Construction Dates - January 2012-Early 2014

Cost - \$188,000,000

Project Team

Owner: The Broad Institute Project Manager: Boston Properties

Architect : ELKUS | MANFREDI ARCHITECTS MEP Engineers : Bard, Rao + Athanas Construction Manager : Suffolk Construction

Architecture

- 15 story, 25000 SF, \$188,000,000, hig-hrise in Kendal Square, Cambridge, MA.
- Consolidates all of the Broad Institute's offices into one location
- Completes the frontage of Ames Street while interacting with the street life
- Areas include labs, offices, vivarium, and 4,000
 SF of retail and restaurant space on the street level
- -Facade is a mixture of stone, terra cotta, spandrel and vision glass

Mechanical .

- Four 115,000 CFM 100% outside air AHU's mounted in the mechanical penthouses
- Two 230,000 CFM dedicated exhaust air handling units on the roof exhausting through 8 air induction nozzles
- Non-lab zone uses constant or variable volume box with hot water heating coils
- Labs supplied with supply air valves using hot water reheat coils

Heating Plant

- Two 500 BHP preheat fire tube boilers
- Four 120 BHP Reheats with one standby
- Two 215 BHP MPS boilers

Chiller Plant

- Three 1000 ton centrifugal chillers
- Two 450 ton centrifugal chillers
- Five cooling towers on the roof

Electrical.

- Two 2000KW/2500KVA Generators
- NSTAR 13.8KV Switchgear
- One Generator Paralleling Switchgear
- Twelve switchboards & 43 Distribution panels
- Recessed linear T5 florescent fixtures in labs
- -Suspended linear T5 fluorescent in offices

Structural

- 48" to 60" diameter caissons
- High capacity drilled mini piles have minimum of 12" diameter with a high capacity of 280 tons
- Concrete floor slabs on metal deck
- Lateral loads resisted with HSS, concentric braced frame design
- -Typical floor construction is 3/4" cover over varying concrete depth on composite decking

http://www.engr.psu.edu/ae/thesis/portfolios/2013/njm5123

Executive Summary

The Broad Institutes new building at 75 Ames Street is set to be done with construction in early 2014. This building has been designed to hold half labs and half executive spaces such as offices and conference rooms. There is also retail space available on the Ames Street front property, and vivariums up on the 12th floor. The HVAC system is currently supplied by 4 Air handling units serving the first 11 floors or labs and offices in a ganged duct system, and another spate air handling unit serving the vivarium. The whole system is 100 % outside air due to the lab spaces and interior rooms are supplied by variable air volume boxes with reheat. The exterior spaces are supplied with VAV boxes and use baseboard heaters by the windows to heat the rooms. The purpose of this report is to see the effects of changing the rooms from a VAV reheat supply to a chilled beams system and the effects of putting the labs on a demand controlled ventilation system such as Aircuity Optinets sensing system.

The first mechanical depth studied the effect of just adding the Aircuity Optinet system to a few lab spaces. These lab spaces could then be turned down to ventilation levels of 4 to 2 ACH instead of the more common 6 to 12 ACH. The results in changing to this new system saved The Broad Institute \$189,042.74 a year compared to the original system. While only costing \$160,000 to install.

The second depth explored the economics and environmental effects of placing a chilled beam system. The chilled beams being added to both the labs and offices drastically decreased the supply air needed for each room and allowed the downsizing of air handling units supply fans. Although there was a premium cost of for the chilled beams, extra piping and added pump of \$743,167.79 the annual savings amount to \$532,217.29. This energy cost savings also translates to a high emissions reduction. The rates compared to the original system changed by up to 22%.

The third depth explored coupling the two systems together to make the saving even greater. For this third system the savings amounted to \$604,658.99 while the total cost was only 903,167.79. The emissions rate was also positively affected by the coupling of the two systems. The percent change went up to 24%.

The breadth study shows that that there is some effect to the lighting system in order to position the chilled beams in the most desirable space. But in studying the different lighting styles it was decided that the original lighting could still be utilized, or a more energy conscious LED system could be used., which cost more up front but could have more savings in the long run, f

After the investigation of the three different mechanical changes to the building it is recommended to add both the chilled beams and Aircuity-Optinets demand controlled ventilation system to maximize both the savings and environmental impact of the building. The Aircuity system will also create a better environment for the occupants of the labs ensuring that contaminants remain within a safe level.

Nathaniel J. Mooney | Mechanical | Dr. William Bahnfleth

Final Report

Acknowledgements

BR+A

The Broad Institute

EILKUS | MANFRDI Architects

Entire Project Design and Construction Team

TRANE TRACE C.D.S. – Help with any questions about using Trane Trace Software

Bryan Donovan - BR+A HVAC Design Engineer - Design assistance with alternatives, Trane Trace, and helping with owner permissions

Tom Kolsun – Aircuity – Help with pricing the Aircuity system

Dr. William Bahnfleth – Advisor helping throughout the senior thesis process

M. Kevin Parfitt, P.E. - Senior Thesis Program Director, Penn State

Bob Holland - Senior Thesis Program Director, Penn State

Corey Wilkinson – System Administrator, Penn State

AE Class 2013

Friends and Family

I want to thank everyone who helped me make it though my five year in architectural engineering and everyone who had any part in helping me work on the Senior thesis project.

Building Overview

Site

75 Ames Street is a new 250,000 sq. ft., 15-story high-rise addition to Kendal Square in Cambridge, Massachusetts (figure1 below). This building is designed to bring together the multiple Broad institute offices around the Cambridge area into one location attached to their main office at 7 Cambridge Center.

Cambridge is a city just outside of Boston, home to such universities as MIT and Harvard. The site for 75 Ames Street now is just a parking garage and a parking lot. The garage will be incorporated into half of the first 5 floors and the other half will be built on the parking lot. Figure 1 shows the area where 75 Ames is to be build and what the street front view will look like.

Figure 1: A look at the location of 75 Ames Street in Cambridge (courtesy of ELKUS | MANFREDI ARCHITECTS)

Architecture

ELKUS | MANFREDI Architects goal was to consolidate the many existing research and development labs and offices of the Broad Institute, which are spread throughout Kendal Square, to one location, 75 Ames Street. The result was a 15 story high rise on Ames Street incorporating an existing garage and a connection to the Broad Institutes current main offices at 7 Cambridge Center.

Windows push through a masonry assembly projected from a curtain wall on the Ames Street façade (top image left) of the building standing out from the surrounding structures without taking away from them. A light weight curtain wall is used on the Ames & Broadway corner (bottom image left) running to the very top emphasizing high. The three other façades reference the design of 7

Cambridge Center, connecting the existing Broad Institute office to this new expansion.

75 Ames worked to complete the streets frontage and interact with street life. This was done with the use of 4,000 SF of retail/restaurant space on the first floor. The upper floors are used for research and development offices and labs, and the top three floors, making up a cake like structure, house the mechanical equipment for the whole building.

Figure 2: Street front View 1

Envelope

The exterior is mainly composed of a mixture of stone, terra cotta, Viracon vision glass and spandrel glass. 75 Ames is made up of 40% glass allowing as much natural light as possible into the building. The penthouse is primarily constructed of aluminum louvers and metal panels. The front façade adds to the vibrant community on Ames Street while the other three facades connect 75 Ames to the current Broad Institute main office next door at 7 Cambridge Center.

Figure 3: Street front view 2

Structure

75 Ames is supported by 48" to 60" diameter caissons and high capacity mimi piles with a minimum of 12 " diameter with a high capacity of 280 tons. The Frame is typically of W24x94 girders for floors 1-5 floors 6-M3 typically use w18x35 steel and plg 72x30. The typical floor construction is 3"x18ga. Composite metal floor deck (galvanized) with 4 ½" normal weight concrete cover, total thickness 7.5" Reinforced with #4@18 EA. WAY TOP or 5 ½" normal weight concrete on 3" x 16ga. Composite metal deck reinf. With 4x4-w4.0x40 WW. W14 steel columns are typical throughout the structures and HHS 10x10x5/8 and w14's are used in the braced frame system.

Electrical

The electrical system of 75 Ames is supplied by 13.8KV switchgear connecting into an existing NSTAR wiring located on AMES Street. Two 2000KW/2500KVA, 277/480V, 3 phase, 4 wire, NO. 2 diesel engine drive generators are to be parallel to the switch gear with an automatic transfer/distribution switchboard. This power supply connects two five (5) 480 main switchboard line-ups. Three of the lineups are 4,000A for laboratory power and building mechanical equipment loads, one is rated 480V, 3-phase, 4-wire for the retail tenant services and the last is rated 480V, 3-phase, 3-wire for fire pump.

Lighting

A low voltage lighting control system is provided as a component of the Building Automation System (BAS). This BAS consists of lighting control panels with individual relays, momentary contact switches, system photocells, and system integral time clocks. In general recessed linear T5 fluorescent fixtures are used in labs, suspended linear T5 fluorescent fixtures are used in offices and a mixture or recessed light slot fluorescent and recessed light slot LED lights are used in conference rooms.

Mechanical System Overview

Level M2 hosts the heating plant consisting of two 500 BHP preheat fire tube boilers, four 120 BHP Reheats with one standby, two 215 BHP MPS boilers for humidification and process steam loads, and finally a pressure reducing LPS for humidifiers. Also on M2 is the chiller plant consisting of three 1000-ton chillers for cooling air handing units 1 through 4. Two 450-ton chillers to serve vivarium (AHU-5) and fan coil units, which serve freezer rooms, tell/data,

Nathaniel J. Mooney

Mechanical

Dr. William Bahnfleth

Final Report

04/03/13

electrical, and the penthouse for spot cooling. Each chiller has a corresponding cooling tower located on the roof.

The ducting on each floor was taken with future floor plan changes in mind. In order to achieve this, air-handling units 1 through 4 each connect to a main ring on each floor. This can be seen in the following figures 5 & 4, which show the supply and exhaust duct respectively. These rings then supply air to each zone on their floor. Since they are serving both labs and offices together return air cannot be utilized since labs call for 100 % outside air. The only return air used in this building is 16000 CFM of air from the connector of 75 Ames Street to 7 Cambridge Center to level M1.

Figure 5: Exhaust Ganged Duct

Figure 4: Suppy Ganged Duct

Mechanical System Design Requirements

This section is an in depth report of the mechanical design objectives, requirements and modeled conditions for 75 Ames Street. It will also look into energy usage and costs for these conditions.

Design Objectives

75 Ames's mechanical design objective is to build a state of the art facility incorporating sustainable design principals of energy conservation that will achieve a United States Green Building Council (USGBC) Leadership in Energy and Environmental Design (LEED) Silver Certification. The HVAC system must be designed and built to support the present building program but maintain flexibility for changes of this program in the future. Spaces to be supported are chemistry wet labs, tissue culture spaces, sequencing

Nathaniel J. Mooney

Mechanical

Dr. William Bahnfleth

Final Report

04/03/13

spaces, a vivarium on level 12, administration areas, restaurant tenant on level one, and positions of possible future vivarium expansion.

All systems will be designed in accordance with Massachusetts State Building Code, City of Cambridge Ordinances, ASHRAE and other recognized standards, NFPA Standards and good engineering practices. As well an effort shall be put forward to design, layout and place equipment in areas of easy access to encourage routine maintenance. The use of isolation valves shall be implemented to enable easy servicing as well as expansion or renovation of any part of the existing facility without interrupting adjacent areas. Air Handling unit cross connection, ring duct or ganged duct, are used to provide redundancy throughout the facility to ensure environmental comfort to each space with in the building

Design Conditions

Exterior Design Conditions

For External conditions, 75 Ames Street is located in Cambridge Massachusetts, which is in the 5A weather region for ASHRAE. Below an exterior design winter and summer condition can be found in Table 1.

Table 1: Exterior Design Conditions

Temperature							
Winter (°F) Summer (°F)							
Exterior Design Temperature	0°	91 db/73 wb					

Interior Design Conditions

The mechanical system in this project needs to meet the following criteria specified by the mechanical engineer to maintain comfortable conditions throughout the many spaces within 75 Ames Street. Interior design temperatures for the primary spaces are shown in table 2 and table 3 shows the relative humidity required.

Each space must use 30% MERV-8 pre-filters and 80-85% MERV 13 final filters for this project. In the Vivarium it is required that HEPA filtration is used for the AHU's the final filtration. Also in table 4 is the various air capacity allowances to each space type in the building.

Table 2: Interior Design Temperatures

Temperature							
	Winter (°F) Summer (°F)						
Offices/Conference	72	75					
Rooms/Lobbies	72	/5					
Laboratories	72	75					
General spaces	72	75					
Vivarium	72	68-75(ADJ)					
Shell/Mech/ Elec. Spaces	60	Ventilation Only					
Loading Dock	60	Ventilation Only					

Table 3: Interior Design Humidity

HUMIDITY							
Winter (%RH) Summer (%RH)							
Offices	25% (±5)	50 (+/-5)					
Laboratories	25% (±5)	50 (+/-5)					
General Spaces	25% (±5)	50 (+/-5)					
Vivarium	25-40%(+/-5)	50 (+/-5)					

Table 4: Interior Design Air Capacity Allowances

	Air capacity Allowance
Laboratories	2.0 CFM/SF
Vivarium	2.5 CFM/SF
Chemistry	3.25 CFM/SF
Office	1.25 CFM/SF

Ventilation

In Appendix A, a spreadsheet for the 5 air-handling units results for minimum outdoor air intake using the calculations for ASHRAE Standard 62.1-2010 Section 6 for ventilation. Air handling units one through four are modeled as one unit in the spreadsheet due to the ganged duct design. Air handling unit 5 is modeled on its own since it only serves the vivarium on floor 12. A summary of what was found can be found in table 5 below.

Table 5: ASHRAE 62.1 Ventilation Compliance Summary

ASHRAE 62.1 Ventilation Compliance Summary							
Design ASHRAE							
Air		Floors	Design	Min OA	62.1		
Handing	Location	Served	CFM	CFM	Min OA		
Unit					CFM	Comply?	
1,2,3,4	M2&M3	M2&M3	460,000	460,000	74,213	Υ	
5	M1	12	60,000	60,000	3,191	Υ	

Nathaniel J. Mooney | Mechanical | Dr. William Bahnfleth

Final Report

As seen by table 5, 75 Ames Street is designed as a 100% outside air and completely complies with ASHRAE 62.1 Ventilation requirements. This is due to the fact that the ganged duct serves both laboratories and administration spaces, and each requiring different levels of ventilation. If it was ever desired to change this setup and design a return air system the following ventilation rates in Table 6 would be used.

Table 6: Interior Design Ventilation Rates

Ventilation Rates				
Space	Ventilation			
Laboratories	100% outside air, 6 -12 ACH (Occupied),			
Laboratories	reduced ACH during unoccupied			
Tissue Culture Rooms	100% outside air, 8-15 ACH			
Office Areas	20 cfm/occupant minimum			
Auditorium/Seminar/Conference/C	15 cfm/occupant minimum			
lassrooms	13 cm/occupant minimum			
Cage wash/Glass wash/Bottle wash	100% outside air, 15 – 20 ACH			
Equipment/Instrument Rooms	100% outside air, 10-20 ACH			
Animal Rooms	100% outside air			
Animal Imaging Rooms	20 cfm/person			
Toilets/Janitor	100% outside air			
Closets/Darkrooms/Lockers	100% ontside all			
Mechanical Spaces	100% outside air (heated and ventilated)			

Heating and Cooling Loads

Heating and cooling loads for 75 Ames Street was found using by taking each rooms design conditions, and construction and putting them in TRANE TRACE software. Below describes the heating and cooling system, and their size. Table 7 also provides a detailed summary of the cooling and heating load calculations from trace and compares them to the loads calculated in Equest by the mechanical engineers at BR+A . 75 Ames is going to primarily have a heating load due to Cambridge Massachusetts being a colder environment.

Heating

The heating of 75 Ames is handled with three 500 Bhp gas fired hot water boilers on the upper mechanical penthouse level with one of the three functioning as stand-by. The hot water pumping system utilizes variable speed drives and shunt pumps for boilers to maintain minimum flow.

Nathaniel J. Mooney | Mechanical | Dr. William Bahnfleth | Final Report

Cooling

The cooling load is handled with three 1000-ton electrical centrifugal chillers to support chilled water system and then two 400-ton electrical centrifugal chillers to support the process chilled water system. These are all located on the upper mechanical penthouse level. These chillers each have a corresponding induced draft-cooling tower on the roof. A plate and frame heat exchanger is to be utilized in the winter to provide support to the processed chilled loads.

Table 7: Heating and Cooling Loads

	AHU	Area	Unit	Air Per Area N/SF)	TOTAL CFM Capacity Per Area		Total			
			Cooling	Heating	Cooling	Heating	Heating (Btuh/sf)	Cooling (tons/SF)	Heating (Btuh)	Cooling (Tons)
Calculated	1-2- 3-4	244,902	1.608	0.4217	393,868	103,283	15.86	.0095	388,300	2,325.4
	5	20,817	1.57	0.538	32,716	11,199	18.379	.0098	382,600	204.7
From Engineers BR+A					458,821	359,690			27,970 MBTU/yr	3,125

Annual Energy Consumption & Cost Information

Below in Table 8 is the estimated annual energy consumption for 75 Ames Street this project is still under construction so no measured data is available. The engineers at Bard, Rao and Athanas came up with a comprehensive Equest energy model that provides the most insight into building performance against a base line designed building created in accordance with ASHRAE 90.1 minimum standards. The Equest model can be compared against another energy performance model designed in Trane Trace.

Table 8:Building Energy Costs

	Electricity (kWh)	Natural Gas (Therms)	Electricty Cost Per year	Natural Gas Cost per year	Total Cost Per Year
Trace	9,985,524.00	107,047.00	\$2,007,090.32	\$170,954.06	\$2,178,044.38
BR+A	8,973,000.00	348,500.00	\$1,803,573.00	\$556,554.50	\$2,360,127.50
ASHRAE 90.1	11,490,000.00	421,600.00	\$2,309,490.00	\$673,295.20	\$2,982,785.20

Nathaniel J. Mooney Mechanical Dr. William Bahnfleth Final Report

From Table 8 it can be seen that 75 Ames Street will perform around 20% better than the baseline ASHRAE 90.1 model. In comparing the two energy models electrical use seems to agree but natural gas usage differs by more than half which is a concern and the Trace Model shall be troubleshot to find the variable causing this difference.

Mechanical Operation and Schematics

In this section of the report is a summary of mechanical equipment and single line drawings explaining system operations. There is also a discussion about the lost useable spaces due to duct chutes, and mechanical spaces and a discussion on the total first cost of the all the mechanical equipment used in the 75 Ames Project.

Major Equipment

Airside

Below are two tables (table 9 and table 10) and two schematics (Figure 6 and figure 7) describing the airside system for supply and exhaust air. Air handling units 1-4 and exhaust units 1-2 provide ventilation and air conditioning to the basement through to level 11. These spaces include labs, offices and administration, and retail restaurant tenant on the first floor.

Supply

Air handlers are equipped with variable frequency drives and flow measuring stations to ensure the correct supply to each space. Figure 6 shows the typical flow of air from the air handing units to a space. Air handlers 1 through 4 each have a total of 115,000 CFM supply and are located on mechanical level 1 below the vivarium on level 12. 100% outside air is taken from louvers on the side of the building on level M1, to the air handlers. The air handlers are equipped with snow melt coils, cooling coils, hot water preheat/heat recovery coils, a humidifier, fans and filters. From here, since these four air handlers are ganged together by the duct system, the total supply to the building from the basement to floor 11 is 460,000 CFM. And the vivarium on floor 12 is served entirely by air handing unit 5 with 60,000CFM. These air-handling units are than ducted to various variable volume and constant volume terminal boxes to supply each space.

Nathaniel J. Mooney | Mechanical | Dr. William Bahnfleth

Final Report

Table 9: Air Handling Units

	Air Handling Units								
				Fans			ling	Heating	
AHU	Location	CFM			Min				
			Quantity	RPM	SP	MBH	LDB F	MBH	LDB F
1	M1	115,000	4	1750	7.5	6650	51.6	6650	52
2	M1	115,000	4	1750	7.5	6650	51.6	6650	52
3	M1	115,000	4	1750	7.5	6650	51.6	6650	52
4	M1	115,000	4	1750	7.5	6650	51.6	6650	52
5	M2	60,000	4	1750	7.5	3370	49.5	3370	52

Figure 6: Typical air handling unit flow diagram

Exhaust

The Exhaust system shall also be designed in a ganged design, same as the air-handling units. Exhaust units include a coil-to-coil heat recovery system, variable frequency drives, filters and fans. The exhaust units are located on the roof and discharge at a safe distance above the roof to minimize recirculation. The exhaust ducts use variable volume return boxes at the room level then rise up to the roof exhaust units for general exhaust. Dedicated exhausts are used in places where processes generate an airstreams incompatible with the ganged exhaust for example, radioactive hood or wet exhaust systems.

Table 10: Exhaust Air Handling Units

	Exhaust Handling Units								
EAHU	Location	CFM	Fans			Heating			
						Recovery			
						Capacity			
			Quantity	RPM	Min SP	MBH			
1	Roof	23000	5	770	5.3	7600			
2	Roof	23000	5	770	5.3	7600			
3	M3	60,000	3	1132	4.5	1620			

Figure 7: Typical exhaust air handling unit flow diagram

Water Side

Chilled Water

The chilled water system for 75 Ames Street is composed of 3 1000-ton centrifugal electric water chillers with one being on standby and 2 450-ton centrifugal electric water chillers with one being standby. The 1000-ton chillers in parallel serve air handlers 1 through 4 and the 450-ton chiller serves chilled water to air handling unit 5.

Each chiller has corresponding chilled water pumps and condenser water pumps shown in table 12. Each chilled water pump is on a variable frequency drive. The flow through the chiller depends on the load demanded by the air-handling units. Water enters the evaporator

Nathaniel J. Mooney

Mechanical

Dr. William Bahnfleth

Final Report

04/03/13

at 56 °F, this is measured by a temperature sensor before entering. The water leaves the evaporator at 42°F and again the pressure and temperature are measured. Before heading to the cooling coils in the air-handling units the chilled water passes a minimum flow bypass assembly to insure that the minimum flow is supplied to each chiller.

The condenser pumps, seen in table 12, each pump the condenser water to the condenser. For chillers 1 through 3 the condenser water is then pumped to cooling towers 1 through 3, which are connected in parallel. A plate and frame heat exchanger is used with chillers 4 and 5 between condenser water return water and process chilled water return.

A flow diagram is provided below in figure 8 to show this process in more detail.

Centrifugal Chiller								
Unit	Nom	Electrica	Evapo	orator	Cond	enser		
Number	tons	1	LWT(F) GPM		LWT(F)	GPM		
		Volts						
CH-1	1,000	460	42	1712.3	94.37	3000		
CH-2	1,000	460	42	1712.3	94.37	3000		
CH-3	1,000	460	42	1712.3	94.37	3000		
CH-4	450	460	42	770	94.37	1350		
CH_E	450	460	12	770	0/1 27	1250		

Table 11: Centrifugal Chillers

Table 12: Chilled Water and Condenser Water Pumps

		Chilled and Condenser Water	r Pumps			
Unit Number	Location	Service	Туре	GPM	TOTAL HEAD (FT, H2O)	VFD?
CHP-1	M2	CHILLED WATER	SPLIT CASE	1712.3	100	Υ
CHP-2	M2	CHILLED WATER	SPLIT CASE	1712.3	100	Υ
CHP-3	M2	CHILLED WATER	SPLIT CASE	1712.3	100	Υ
CHP-4 (STAND-BY)	M2	CHILLED WATER	SPLIT CASE	1712.3	100	Υ
CHP-5	M2	PROCESSED CHILLED WATER	SPLIT CASE	770	100	Υ
CHP-6	M2	PROCESSED CHILLED WATER	SPLIT CASE	770	100	Υ
CHP-7 (STAND-BY)	M2	PROCESSED CHILLED WATER	SPLIT CASE	770	100	Υ
CWP-1	M2	CONDENSER WATER	SPLIT CASE	3000	75	N
CWP-2	M2	CONDENSER WATER	SPLIT CASE	3000	75	N
CWP-3	M2	CONDENSER WATER	SPLIT CASE	3000	75	N
CWP-4 (STAND- BY)	M2	CONDENSER WATER	SPLIT CASE	3000	75	N
CWP-5	M2	CONDENSER WATER	SPLIT CASE	1350	75	N

Nathaniel J. Mooney

Mechanical Dr. William Bahnfleth

Final Report

CWP-6	M2	CONDENSER WATER	SPLIT CASE	1350	75	N
CWP-7 (STAND-BY)	M2	CONDENSER WATER	SPLIT CASE	1350	75	N

Table 13: Plate and Frame Heat Exchanger

	Plate and Frame Heat Exchanger								
Unit	Location	Service	Chilled Water Side		Condenser Water Side				
			EWT (F) LWT (F)		EWT (F)	LWT (F)			
HEX-1	M2	FREE COOLING				48			

Table 14: Cooling Towers

Cooling Towers								
Unit	Nom.	EWT	LWT	GPM	Si	Size		
Number	Tons				L	Н		
CT-1	1000	95	85	3000	22	14		
CT-2	1000	95	85	3000	22	14		
CT-3	1000	95	85	3000	22	14		
CT-4	450	95	85	1350	21	11.9		
CT-5	450	95	85	1350	21	11.9		

Nathaniel J. Mooney | Mechanical | Dr. William Bahnfleth | Final Report | 04/03/13

Figure 8: CHILLER 1, 2, &3 FLOW DIAGRAM

Figure 9: CHILLER 4 & 5 FLOW DIAGRAM

Hot Water

The hot water system is located on level M2. Two 500 BHP fire tube boilers (table 15) are used in parallel for preheat or heat recovery of each air handling unit and heating and ventilating units in the mechanical penthouses. Four 116 BHP hot water condensing boilers (table 16) are used for reheat to supply the building terminal reheat.

For the hot water preheat boilers three pumps in parallel on variable frequency drives are used. Two shunt pumps are also used for each boiler to maintain a minimum flow. Temperature and pressure are measured before entering the boiler then leaving the boiler the hot water supply passes pressurized differential bypass sized for 25% of total flow. After passing this the hot water supply is taken to the heating and ventilating units, and air-handling units alighted in parallel. The temperature and pressure is again taken before reaching the units. The hot water return then passes an air eliminator before reaching the hot water boiler pumps once again.

The four hot water condensing boilers located in the mechanical room are arranged in parallel. Two hot water pumps on variable frequency drives are used to pull the hot water supply through an air eliminator through to the building terminal reheat loads. A 4" pressure differential bypass sized for 25% of the total flow.

Figure 10&11 gives a visual representation for the hot water preheat flow and hot water reheat flow discussed in the paragraphs above.

Table 15: Hot Water Boilers

Hot Water Boiler								
Unit	Service		Output		Inpu	ut		
Number		HP	MBH	LWT	Primary Fuel	Secondary		
B-1	PREHEAT	500	16738	180	NAT. GAS	#2 OIL		
B-2	PREHEAT	500	16738	180	NAT. GAS	#2 OIL		

Table 16: Hot water Condernsing Boilers

	Hot Water Condensing Boiler						
Unit	Service	Output			Input		
Number		HP	HP MBH LWT		Primary Fuel	Secondary	
B-3	RE-HEAT	116	3,880	140	NAT. GAS	#2 OIL	
B-4	RE-HEAT	116	3,880	140	NAT. GAS	#2 OIL	
B-5	RE-HEAT	116	3,880	140	NAT. GAS	#2 OIL	
B-6	RE-HEAT	116	3,880	140	NAT. GAS	#2 OIL	

Table 17:Hot water Pumps

		Hot Water P	umps			
UNIT	LOCATION	SERVICE	ТҮРЕ	GPM	TOTAL HEAD FT, H2O	VFD?
HWP-1	M2	HOT WATER (BOILER)	END SUCTION	850	50	Y
HWP-2	M2	HOT WATER (BOILER)	END SUCTION	850	50	Υ
HWP-3 (STAND-BY)	M2	HOT WATER (BOILER)	END SUCTION	850	50	Υ
HWP-4	M2	HOT WATER (RE-HEAT-RAD)	SPLIT CASE	975	50	Υ
HWP-5 (STAND-BY)	M2	HOT WATER (RE-HEAT-RAD)	SPLIT CASE	975	50	Υ
HWP-6 A&B	M2	HW B-2 SHUNT PUMPS	IN-LINE	135	-	N
HWP-7 A&B	M2	HW B-1 SHUNT PUMPS	IN-LINE	135	-	N

Figure 10: Hot Water Boiler Flow Diagram

Figure 11: Hot Water Condensing Boiler Flow Diagram

ASHRAE Standard 62.1

Section 5: Systems and Equipment

5.1 **Ventilation Air Distribution**

75 Ames Street is designed to meets the design requirements for ventilation air distribution as required by Section 6 of Standard 62.1. Each lab is split into multiple zones and supplied with supply air valves using hot water reheat coils. A separate variable or constant volume box supplies each non-lab zone with hot water heating coils sized to handle the heating load and minimum airflow rates.

5.2 **Exhaust Duct Location**

All ganged general exhaust is discharged at a safe distance above the roof to minimize recirculation. This is done with two 230,000 CFM exhaust air handling units located on the roof serving floors 0-11 and a 60,000 CFM EAHU serving the vivarium on floor 12. A CFM offset is maintained to keep office zones positively pressurized with respect to adjacent lab areas. Exhaust ducts are held at minimum SMACNA pressure class of 8" H2O.

5.3 **Ventilation System Controls**

A complete digital control system is utilized this allows shall be capable of operating at occupied and unoccupied mode of operation on a perzone basis. All variable air volume boxes are based on an occupancy schedule with a supply damper modulating between flow rates in order to comply with Standard 62.1.

5.4 **Airstream Surfaces**

All ductwork is constructed of galvanized sheet steel in accordance with (SMACNA). Therefore 75 Ames Street falls under the exception of sheet metal surfaces and metal fasteners.

5.5 **Outdoor Air Intakes**

Outdoor air intakes for AHU's 1-5 are located inside on floors M1, M2, and M3 and designed in accordance with table 5-1 from ASHRAE 62..1 Section 5.5. All intakes are over 30' from exhaust stacks.

TABLE 5-1 Air Intake Minimum Separation Distance

Object	Minimum Distance, ft (m)
Class 2 air exhaust/relief outlet (Note 1)	10 (3)
Class 3 air exhaust/relief outlet (Note 1)	15 (5)
Class 4 air exhaust/relief outlet (Note 2)	30 (10)
Plumbing vents terminating less than 3 ft (1 m) above the level of the outdoor air intake	10 (3)
Plumbing vents terminating at least 3 ft (1 m) above the level of the outdoor air intake	3 (1)
Vents, chimneys, and flues from combustion appliances and equipment (Note 3)	15 (5)
Garage entry, automobile loading area, or drive-in queue (Note 4)	15 (5)
Truck loading area or dock, bus parking/idling area (Note 4)	25 (7.5)
Driveway, street, or parking place (Note 4)	5 (1.5)
Thoroughfare with high traffic volume	25 (7.5)
Roof, landscaped grade, or other surface directly below intake (Notes 5 and 6)	1 (0.30)
Garbage storage/pick-up area, dumpsters	15 (5)
Cooling tower intake or basin	15 (5)
Cooling tower exhaust	25 (7.5)

Note 1: This requirements applies to the distance from the outdoor air intakes for one ventilation system to the exhaust/relief outlets for any other ventilation system. Note 2: Minimum distance Histed does not apply to laboratory fume hood exhaust air outlets. Separation criteria for fume hood exhaust shall be in compliance with NFPA 455 and ANSI/AIHA Z9.5.6 Information on separation criteria for industrial environments can be found in the ACGIH Industrial Ventilation Manual 7 and in the ASHRAE Handbook–HVAC Applications.8

Note 3: Shorter separation distances shall be permitted when determined in accordance with (a) ANSI Z223.1/NFPA 549 for fuel gas burning appliances and equipment, (b) NFPA 3110 for oil burning appliances and equipment, or (c) NFPA 21111 for other combustion appliances and equipment.

Note 4: Distance measured to closest place that vehicle exhaust is likely to be located.

Note 5: Shorter separation distance shall be permitted where outdoor surfaces are sloped more than 45 degrees from horizontal or that are less than 1 in. (3 cm) wide.

Note 6: Where snow accumulation is expected, the surface of the snow at the expected average snow depth constitutes the "other surface directly below intake."

Figure 12: TABLE 5-1 ASHRAE Standard 62.1 Section 5

Louvers located on floors M1, M2, and M3 open to an air plenums which serve each outdoor air intakes. These louvers (figure 13 below) contain welded mesh to prevent rain, snow and bird intrusion. The interior of the plenum has a 15 degree pitch to drain any possible water intrusion. This set up allows for 75 Ames to meet the requirements set by section 5.5.2, 5.5.2, and 5.5.3.

Figure 13: Louvers Supplying Outside Air To AHU's (courtesy BR+A)

5.6 Local Capture of Contaminants

Discharge of non-combustion equipment that captures the contaminants generated by the equipment is ducted directly outdoors per section 5.6.

5.7 Combustion Air

All fuel burning appliances are provided with sufficient air for combustion and are vented directly outside of the building in order to comply with Section 5.7. Fuel burning appliances include two hot water boilers, 4 hot water condensing boilers, 2 steam boilers, 2 generators.

5.8 Particulate Matter Removal

All air handling units use pre-filter with a MERV 8 rating, a secondary filter with MERV 14 and final filter with MERV 17 rating. Pre-filters with MERV rating of 8 are located upstream of all cooling coils and future installation of snow melt coils.

5.9 Dehumidification Systems

75 Ames is set to maintain 25% +/-5 relative humidity in the winter and 50% +/-5 in the summer. Standard 5.9 specifies 65% relative humidity or less therefore this requirement is satisfied.

Drain Pans 5.10

Drain pans shall provide a 1-1/2" deep stainless steel pan under any units with cooling coils and duct mounted humidifiers located above hung ceilings. Pans shall be 6" larger than equipment in all directions. Drain pans are to be piped to floor drains or utility sinks. Pans shall slope at a minimum of 1/8th in. per foot from the horizontal towards the drain outlet. Drain pan outlet(s) is the lowest point(s) of the pan with sufficient size to prevent overflow during normal conditions.

5.11 **Finned Tube Coils and Heat Exchangers**

Drain pans are specified for removal of condensate upstream or downstream of coils per section 5.10. All heat exchangers shall be of single-pass construction with all connections on the fixed frame plate to facilitate cleaning of the unit. An access space of 18 in is not specifically mentioned.

5.12 **Humidification and Water-Spray Systems**

The humidifiers receive steam at low pressure steam and discharge at atmospheric pressure. This steam came from a potable source, the city of Cambridge water supply. All air cleaners or ductwork obstructions are located downstream of the humidifier at a distance equal to or greater than 10 in., the absorption distance.

5.13 **Access for Inspection Cleaning & Maintenance**

Access doors allow access to outdoor intake plenums, mixed air plenums, upstream surface of each heating, cooling, and heat recovery coil as well as air cleaners, drain pans, fans, and humidifiers. Each heating coil in the air terminal boxes will provide an access door on each side, upstream and downstream. Below figure 14 shows a duct access door detail.

Figure 14: Duct Access Doors Detail (courtesy BR+A)

31

5.14 **Building Envelope and Interior Surfaces**

The building envelope contains a continuous vapor barrier and penetrations in this envelope are sealed to limit infiltration. Below Table 18 shows the various insulated piping, ductwork and equipment to comply with condensation on interior surfaces.

Table 18: Insulation For Piping Ductwork and Equipment (courtesy BR+A)

Service	Type Insulation & Thickness (Inches)	Conceal ed Areas	Finished Areas			
Piping						
Hot Water Up to 2" 2 ½" and up	Molded Fiberglass 1½ 2	ASJ "	ASJ "			
Chilled Water Up to 12" 14" and up	Molded Fiberglass ASJ 1 ASJ 2 ASJ		ASJ ASJ ASJ			
LPS Steam Up to 1-1/2" 1-1/2" to 6" 6" & Up	Molded Fiberglass 1-1/2 2 3-1/2					
Condensation Drains & Vents, Cold Water Make-Up	Molded Fiberglass 1	ASJ				
Blowdowns & Condensate (All Pressures) 1/2" to 2" 2-1/2" & Up	Molded Fiberglass 1 1-1/2	ASJ ASJ				
Emergency Generator Exhaust Piping	Hydrous Calcium Silicate 3-1/2	ADJ-6	ADJ-3b			
Piping with Heat Trace	Molded Fiberglass 3"	ASJ	ADJ-3b			
All Outdoor Piping	Two times thickness scheduled except heat traced		ADJ-3b			
All Pipe within Equipment Room with Chillers or Boiler Plant	As Scheduled		ADJ-5			

Service	Type Insulation & Thickness (Inches)	Conceal ed Areas	Finished Areas			
Others not Scheduled	Molded Fiberglass 1	ASJ				
Ductwork						
All Concealed Supply Air Ductwork	Flexible Fiberglass with Vapor Barrier 1					
Outside Air Intake Ducts & Exposed Supply Air Ducts	Rigid Fiberglass (Flexible) 1					
All Kitchen Hood Exhaust Ductwork	Super Firetemp Type M System 3"					
Louver Blank-off Panels	Rigid Fiberglass Board Insulation 3"	FSKL				
Outside Ductwork Supply, Exhaust, Return and Other	Rigid Fiberglass Board Insulation 2 times scheduled but not less than 2"	FSKL	EPDM Roofing			
	Equipment					
Hot Water, Glycol, Expansion, Compression Tanks and Air Separators	Calcium Silicate Block 1		Finishing Cement & Porterlag			
Condensate Tanks	Calcium Silicate Block 3	ADJ-6				
Hot Water Pumps	Fiberglass 3		Same as piping			
Emergency Generator Exhaust	Calcium Silicate Block 3		ADJ-3b			
Emergency Generator Mufflers	Calcium Silicate Block 3		Finishing Cement & Porterlag			
Breeching	Calcium Silicate Block 3		ADJ-3b			
Humidifier Steam Kettles, Deaerator Tank, Blowdown	Calcium Silicate Block 3		ADJ-6			

Service	Type Insulation & Thickness (Inches)	Conceal ed Areas	Finished Areas
Tanks, Boiler Feed System			
Tanks	Calcium Silicate Block 3		ADJ-6
Boiler Feed System	Calcium Silicate Block 3		ADJ-6
Blowdown Tanks	Calcium Silicate Block 3		ADJ-6
Blowdown Separator	Calcium Silicate Block 3		ADJ-6
Chilled Water Pumps	Insulcote or Armaflex 2		Formed Covers w/Velcro Fastening

5.15 **Buildings with Attached Parking Garages.**

The basement through level 5 has an attached garage. The building is positively pressured when compared to the parking garage and a vestibule located on the ground floor is used to separate the garage from 75 Ames.

5.16 Air Classification and Recirculation.

Most zones are exhausted through two 230,000 CFM EAHU on the roof or directly exhausted through exhaust fans located on the roof with no recirculation. The only return air in the system is 16,000 CFM from the 7 Cambridge Center to 75 Ames street connector on floor two through seven that supply return air to level M1. The vivarium on floor 12 has its own dedicated exhaust air handing unit.

5.17 Requirements for Buildings Containing ETS Areas and ETS-Free Areas.

75 Ames St. is a non-smoking facility; therefor this section is not applicable.

Nathaniel J. Mooney | Mechanical | Dr. William Bahnfleth

Final Report

Section 6: Ventilation Rate Procedure Analysis

To verify compliance with ASHRAE Standard 62.1 Section 6 Ventilation Air Rate Procedure, all 5 AHU's were analyzed. All ducting is designed in a loop fashion allowing connections to multiple air handing units. This was chosen for flexibility of future designs as-well as ensuring the labs achieve appropriate ventilation levels needed. Below table 19 shows all 5 AHU's and the supplied air to each floor. Each AHU is 100% outside air due to the loop duct design and labs demanding 100% outside air. Below (table 19) is a helpful table of the airflow to each floor from each air handing unit to the main rings on each floor.

Level	AHU 1 (CFM)	AHU 2 (CFM)	AHU 3 (CFM)	AHU 4 (CFM)	AHU 5 (CFM)
Level 12 (Vivarium)	0	0	0	0	60,000
Level 11	0	23,500	23,500	0	0
Level 10	7,000	18,000	18,000	4,000	0
Level 9	7,000	18,000	18,000	4,000	0
Level 8	7,000	18,000	18,000	4,000	0
Level 7	7,000	18,000	18,000	4,000	0
Level 6	7,000	1,950	1,950	4,000	0
Level 5	20,000	0	0	16,000	0
Level 4	20,000	0	0	16,000	0
Level 3	20,000	0	0	16,000	0
Level 2	20,000	0	0	16,000	0
Level 1	0	0	0	21,000	0
Basement	0	0	0	10,000	0

Table 19: Air Supplied To Each Floor

To calculate the breathing zone outdoor airflow (V_{bz}) the following equation, given by Equation 6-1 in Section 6.2.2.1 of Standard 62.1.

$$Vb_z = (R_p \cdot P_z) + (R_a \cdot A_z)$$

Where: A_z = zone floor area: the net occupiable floor area of the ventilation zone ft2 (m2)

> P_z = zone population: the number of people in the ventilation zone during typical usage.

 R_p = outdoor airflow rate required per person as determined from Table 6-1 R_a = outdoor airflow rate required per unit area as determined from Table 6-1 The zone outdoor airflow (Voz) is the air that must be provided to the ventilation zone by the supply air distribution system. This is calculated using Equation 6-2 from Standard 62.1.

$$V_{oz} = V_{bz}/E_z$$

Ez = zone air distribution effectiveness. For 75 Ames was found from table 6-2 to be 1

For 100% outside air system the outdoor air intake is given by Equation 6-4 of Standard 62.1, also shown below.

$$V_{ot} = \sum_{all\ zones} V_{oz}$$

V_{oz}= zone outdoor air flow

The primary outdoor air fraction (Z_{DZ}) , the minimum percent of supply air that is outdoor ventilation air, is calculated with the ratio of zone outdoor airflow and zone primary airflow shown in Equation 6.5 from Standard 62.1 below

$$Z_{pz} = V_{oz}/V_{pz}$$

V_{pz} is the primary airflow rate supplied to the zone from an air handling unit where the outdoor intake is located. When used with variable air volume supply this primary airflow rate shall be the lowest expected primary airflow rate to the zone when fully occupied.

ASHRAE Standard 62.1 Summary

Using the equations given above a spread sheet was used (Appendix A) to calculate the minimum outside air CFM to comply with ASHRAE 62.1. Since Air handling units one, two, three and four are all connected via ducting to one another they were analyzed as one system for the whole building. Air handling unit 5 was analyzed by itself since it only serves the vivarium on the 12th floor.

75 Ames Street is in complete compliance with ASHRAE Standard 62.1-2010 shown in table 20 below. This is since all air handling unit's supply 100% outside air. This building was designed to be easily retrofitted so in order to do this easily a ring ducting system was utilized serving all spacing including labs which are designed for 100% outside air. Thus all spaces must use 100% outside air. Future considerations could be to install return air ducting from and to offices and similar areas.

ASHRAE 62.1 Ventilation Compliance Summary							
					ASHRAE		
Air				Design	62.1		
Handing		Floors	Design	Min OA	Min OA		
Unit	Location	Served	CFM	CFM	CFM	Comply?	
1,2,3,4	M2&M3	0-11	460,000	460,000	74,213	Υ	
5	M1	12	60,000	60,000	3,191	Υ	

Table 20: Ventilation Compliance Summary

ASHRAE Standard 90.1

Section 5 Building Envelope

5.1.4 Climate Zone

75 Ames Street is located in Cambridge Massachusetts, which can be seen in the figure 15 below. This location classifies Ames Street as zone 5A a cold, moist climate.

Figure 15: Climate Zones for the United States (ASHRAE)

5.4 Mandatory Provisions

75 Ames utilizes two vestibules for the main entrances from the attached garage and from the Ames Street side of the building both with self-closing devices attached. The entire building envelope is constructed with a continuous air barrier and any penetration to the exterior envelope to be sealed.

04/03/13

Nathaniel J. Mooney | Mechanical | Dr. William Bahnfleth | Final Report

5.5 Prescriptive Building Envelope

Compliance was determined for the building envelope required by Standard 90.1 was done using the prescriptive building technique. Below are two tables. Table 21 matches various enclosure materials R, U and SHGC to those for a nonresidential building located in climate zone 5A. Table 22 assures compliance with Section 5.5.4.2.1 Vertical Fenestration Area, which states, "the total vertical fenestration area shall be less than 40% of the gross wall area".

Table 21:Building Envelope Requirements

	Building Envelope Requirement for Nonresidential 5A								
		Insulatio		Max			•	Comply?	
	R-	n Min.	U-	U-		Max	U-	R-	
Element	Value	R-value	Value	Value	SHGC	SHGC	Value	Value	SHGC
Roof Metal Deck Roof	R= 20 c.i.	R=20 c.i.	-	-	-	-		Y	-
Walls, Above- Grade, Steel Famed	R=12 c.i.	R-13.0 + R-7.5 c.i.	-	-	-	-		Y	-
Vertical Glazing, Metal framing (curtain wall/storefront)	-	-	0.29 0.26	0.50	0.38 0.40	0.40	Υ	-	Y

Table 22:Vertical Fenestration Area

Vertical Fenestration Area								
Face Glazing Area ft ² Wall Area ft ² Glazing % Comply?								
North	16870.68	34831.25	48.43547	-				
East	30983.36	51076	60.66129	-				
South	7047.96	40217.035	17.52481					
West	13453.72	48093.825	27.9739	-				
Total	68355.72	174218.11	39.23571	Υ				

As seen by the tables 75 Ames Street performance complies with or beyond the given prescription for the building envelope insulations and U-values. For fenestration even though some wall areas have over 40% glazing that is made up for by using much less glazing on other wall such as the south and west in order for the whole building enclosure to reach just below the 40% set by Standard 90.1.

Section 6 Heating, Ventilating and Air Conditioning

6.2 Compliance Paths

75 Ames does not meet the height, square footage and HVAC system conditions to use the simplified approach option for HVAC systems. Because of this the Mandatory Provisions and Section 6.5 Prescriptive Path must be used.

6.4 Mandatory Provisions

Minimum equipment efficiencies from Tables 6.8.1A-K of ASHRAE 90.1 are met.

A combination directs digital/electric/electronic temperature control system and building automated system is to be utilized in this building. The system is comprised of digital controllers, electric/electronic control equipment, thermostats, sensors, controllers, valves, dampers, actuators, and other accessory equipment.

Generally only private/enclosed offices shall have open set point adjustments. Because of tampering concerns all other areas shall be sensor only. Room sensors shall have an accuracy of +/-2% at 70 F. The system will have setback controls for times when the building is unoccupied. As well rooms shall be fitted with CO2 occupancy sensors.

6.5 Prescriptive Path

All the AHU's that serve 75 Ames are 100% outside air units. Heat recovery is used with between each of the AHU's and EAHU's with a heat exchanger. As can be seen by the table 23, some fans do comply with Section 6.5.3.1.1 on fan power. For the fans which do not comply, this is because 75 Ames can fall under the exception having both laboratory systems and a vivarium that utilizes flow control devices on exhaust and return to maintain space pressure relationships necessary.

Table 23:Fan Power Limitation Compliance

Fan Power Limitation Compliance						
Unit	CFM	HP	CFM*0.0011	CFM*0.0015	Comply?	
AHU-1	115000	224	-	172.5	N	
AHU-2	115000	224	-	172.5	N	
AHU-3	115000	224	-	172.5	N	
AHU-4	115000	224	-	172.5	N	
AHU-5	60000	112	-	90	N	
EAHU-1	230000	320	-	345	N	
EAHU-2	230000	320	-	345	N	
EAHU-3	60000	80	-	90	Υ	
EF-1	20,000	6.6	22.0000	-	Υ	
EF-2	7,500	2.6	8.25	-	Υ	
EF-4	6,000	2.39	6.6	-	Υ	
EF-5	750	0.32	0.825	-	Υ	
EF-7	2,150	1.3	2.365	-	Υ	
EF-10	2,500	1.6	2.75	-	Υ	
EF-11	1,000	0.6	1.1	-	Υ	
EF-12	1,000	0.5	1.1	-	Υ	
EF-13	800	0.5	0.88	-	Υ	
EF-14	1,300	0.7	1.43	-	Υ	
EF-15	800	1.1	0.88	-	N	
EF-16	1,700	0.9	1.87	-	Υ	
EF-17	800	0.4	0.88	-	Υ	
EF-18	7,500	3.6	8.25	-	Υ	
EF-19	1,500	1.5	1.65	-	Υ	

RF-1	16,000	8.7	17.6	-	Υ
SF-1	27,000	14.6	29.7	-	Υ
SF-2	18,000	9.0	19.8	-	Υ
SF-3	7,500	2.8	8.25	-	Υ
SF-4	2,500	1.0	2.75	-	Υ
SF-5	7,000	2.6	7.7	-	Υ

6.7 Submittals

100% construction drawings were supplied to the Broad Institute. These included locations, performance data, dimensions and general configurations of all HVAC equipment. Brochures shall be submitted that contain only information relative to the particular equipment.

Section 7 Service Water Heating

7.4 Mandatory Provisions

Table 7.8 gives the minimum performance requirements for water heating equipment. The heating for 75 Ames is from two 16738 MBH hot water boilers and four 3880 MBH hot water condensing boilers. All necessary service hot water piping is insulated. The system utilizes service water heating controls for temperature. Sequencing ensures that if one boiler cannot maintain 140 F leaving water temperature then another boiler control valve shall open and its boiler shall be started.

Section 8 Power

75 Ames Street specifications call for compliance with the National Electric Code (NEC). The National Electric Code specifies a maximum of 3% voltage drop for feeders and maximum of 5% voltage drop for branch circuits. This does not comply with Section 8 of ASHRAE 90.1 which states feeders should have a max voltage drop of 2% and branch circuits 3%.

Section 9 Lighting

9.4 Mandatory provisions

Rooms are equipped with occupancy censors in the ceilings to control the lighting for occupied/unoccupied times, along with manual controls on the wall.

Nathaniel J. Mooney

Mechanical Dr. William Bahnfleth Final Report

9.6 Alternate Compliance Path: Space-by-Space Method.

Table 9.6.1 Lighting Power Densities Using the Space-by-Space Method was used to determine compliance with ASHRAE 90.1 Section 9. Below in Table 24 one can see a spreadsheet with space types total areas and allowed lighting power densities. The actual data is then compared against the ASHRAE standard. The percent under ASHRAE 90.1 is shown as well. 75 Ames goes beyond the ASHRAE 90.1 Standard reducing lighting power density by 30%.

Table 24:Space-by-Space LPD Compliance

Space-By-Space LPD Compliance							
SPACE TYPE	AREA	ALLOWED W/SF	ALLOWED WATTS	ACTUAL WATTS			
STAIRS ACTIVE	9802	0.69	6763.38	13051			
ELECTRICAL/MECHANICAL	79214	1.5	118821	25020			
ACTIVE STORAGE	5809	0.63	3659.67	3494			
CORRIDOR/TRANSITION	51581	0.66	34043.46	28462			
WAREHOUSE	1905	0.95	1809.75	767			
RESTROOMS	6052	0.98	5930.96	7203			
OFFICE-ENCLOSED	54448	1.11	60437.28	41878			
LOBBY	5470	0.9	4923	11927			
CONFERENCE MEETING/MULTI-PURPOSE	9324	1.23	11468.52	12174			
LOUNGE/RECREATION	17809	0.73	13000.57	18842			
LABORATORY	74939	1.81	135639.59	108279			
ATRIUM	4291	0.6	2574.6	6822			
CAGE WASH	4059	1.2	4870.8	3960			

TOTAL AREA:	324703
ALLOWED WATTS:	403943
ACTUAL WATTS:	281878
WATTS/ SQUARE FOOT:	0.87
PERCENT UNDER ASHRE 90.1	30%

Section 10 Other Equipment

Nominal motor efficiencies are specified to meet NEMA Standard MG 1 therefore, 75 Ames meets the requirements set by ASHRAE 90.1 Section 10. The Values used in Table 10.8C of ASHRAE 90.1 are based off of the values established by NEMA Standard MG 1.

Nathaniel J. Mooney Mechanical Dr. William Bahnfleth Final Report 04/03/13 42

ASHRAE Standard 90.1 Summary

ASHRAE Standard 90.1 provides a baseline of rules and standards to make an energy efficient design. The standard goes detailed into building material, HVAC, heating, power, lighting and other equipment. By comparing a design to these baseline standards, conclusions may be drawn about the efficiency of a design.

Using the prescriptive method on 75 Ames Street with Standard 90.1, 75 Ames fared well especially in the lighting power density section where it preformed 30% better than the baseline model. The exterior envelope was on par with ASHRAE 90.1 having values at or better than those required and the total fenestration fell right to the max allowed 40% of the total wall area.

There were few areas of concern with comparing 75 Ames with Standard 90.1. The fan power section had a few fans that did not comply, but given the exception that 75 Ames is providing for labs and a vivarium those larger horsepower's are necessary.

LEED Analysis

LEED, standing for Leadership in Energy and Environmental Design, is an internationally recognized program that sets a standard for rating the design, construction and operation of high performance green buildings. Buildings can apply for LEED certifications of certified, silver, gold, and platinum. The certifications are achieved by satisfying various credits and prerequisites each rewarding the project with a set number of points. The minimum number of points to be certified is 40 out of a total of 110-points.

It is very desirable to achieve LEED status on buildings to lead the way to a more sustainable future. LEED lowers operating costs of a building, conserves energy and water, reduces waste, is healthier for the building occupants, and lastly qualifies for tax rebates and other incentives.

At 75 Ames Street The Broad Institute is on route to achieving a LEED Silver status with 56 estimated points. Below you will find the various credits and prerequisites for LEED 2009 New Construction and Major Renovations with a summary of their intent. Below you will also find the number of points achieved for each credit 75 Ames is perusing. A 2009 LEED checklist is also provided in APPENDIX B.

Sustainable Sites

SS Prerequisite 1: Construction Activity Pollution Prevention

Required

Intent: Reduce the pollution that results from the construction.

Loss of soil during construction, sedimentation of storm sewers and receiving drains, and pollution of the air with dust and particulate matter were all prevented.

Nathaniel J. Mooney

Mechanical

Dr. William Bahnfleth

Final Report

04/03/13

SS Credit 1: Site Selection

Achieved: 1 of 1 point

Intent: To make sure the development is not on an inappropriate site and to reduce the environmental impact of the building location

75 Ames Street meets this credit by its location in Cambridge, there area no special areas to which this requirement would need to take effect.

SS Credit 2: Development Density and Community Connectivity

Achieved: 5 of 5 points

Intent: To channel development to more urban areas with existing infrastructure, protect greenfields and preserve habitat and natural resources

This development is located in Kendal Square in Cambridge Massachusetts. This site is located on a previously developed area within half a mile from a residential area and from at least ten basic services. And finally there is pedestrian access. Therefor this construction meets the following requirements for this credit.

SS Credit 3: Brownfield Redevelopment

Achieved: 1 of 1 Point

Intent: SS Credit 3 is intended to rehabilitate damaged sites where development is complicated by environmental contamination and to reduce pressure on undeveloped land.

This site was documented as contaminated by means of an ASTM E 1903-97 Phase II Environmental Site Assessment.

SS Credit 4.1: Alternative Transportation—Public Transportation Access

Achieved: 6 of 6 Points

Intent: To reduce automobile use and thus the pollution and land development effects.

75 Ames Street is located roughly 500ft from the local Kendal/MIT train and bus stop. This is less than the ½ mile proximity denoted in the requirements for this credit.

SS Credit 4.2: Alternative Transportation—Bicycle Storage and **Changing Rooms**

Achieved: 0 of 1 Point

Intent: To reduce automobile use and thus the pollution and land development effects.

No showers or changing facilities were provided for building occupants thus no points could be awarded.

Nathaniel J. Mooney

Mechanical Dr. William Bahnfleth Final Report 04/03/13

SS Credit 4.3: Alternative Transportation—Low-Emitting and Fuel-Efficient Vehicles

Achieved: 3 of 3 Points

Intent: To reduce automobile use and thus the pollution and land development effects.

Preferred location parking was provided for low emitting/fuel efficient vehicles equal to 5% of parking capacity.

SS Credit 4.4: Alternative Transportation—Parking Capacity

Achieved: 2 of 2 Points

Intent: To reduce automobile use and thus the pollution and land development effects.

The parking does not exceed local zoning requirements. And preferred parking is given to carpools for 5% of the total parking.

SS Credit 5.1: Site Development—Protect or Restore Habitat

Achieved: 0 of 1 Point

Intent: To conserve existing natural areas and restore damaged areas to provide biodiversity.

This credit was unable to be achieved for the Ames Street project. A minimum of 20% of the total site including the building footprint was not restored or protected with native or adaptive vegetation.

SS Credit 5.2: Site Development—Maximize Open Space

Achieved: 0 of 1 Point

Intent: To provide a high ratio of open space to development footprint in order to promote biodiversity.

A vegetative roof area was unable to be utilized in the design of this building to allow the building to comply with 20% vegetated open space of the project open site.

SS Credit 6.1: Storm water Design—Quantity Control

Achieved: 1 of 1 Point

Intent: To limit disruption of natural hydrology by reducing impervious cover, increasing on-site infiltration, reducing or eliminating pollution from storm water runoff and eliminating contaminants

Storm water management systems were put in place to achieve this credit. The pre and post site runoff rates are to be monitored to determine that the post peak discharge rate and quality does not exceed the predevelopment peak discharge rate and quality.

SS Credit 6.2: Storm water Design—Quality Control

Achieved: 1 of 1 Point

Intent: To limit the disruption and the pollution of natural water flows by managing the storm water runoff.

75 Ames is on track to achieve this credit by having a storm water management plan that reduces the impervious cover, promotes infiltration and captures and treats the storm water runoff from 90% of the average annual rainfall. The best management practices are to be put in place capable of removing 80% of the average annual post development total suspended solids load based on existing monitoring reports.

SS Credit 7.1: Heat Island Effect—Non-roof

Achieved: 1 of 1 Point

Intent: To reduce heat islands, minimizing the impacts on microclimates and human and wildlife habitats.

More than the minimum of 50% of parking spacing are under cover in a parking garage attached to 75 Ames Building. The roof SRI has a SRI of at least 29.

SS Credit 7.2: Heat Island Effect—Roof

Achieved: 1 of 1 Point

Intent: To reduce heat islands, minimizing the impacts on microclimates and human and wildlife habitats.

75% of the roof has a solar reflectance index (SRI) greater than or equal to a value of 78 for low-sloped roofs.

SS Credit 8: Light Pollution Reduction

Achieved: 0 of 1 Point

Intent: To minimize light trespass from the building and site, reduce sky-glow to increase night sky access, improve nighttime visibility through glare reduction and reduce development impact from lighting on nocturnal environments.

This credit was unable to be achieved for this project.

WE Prerequisite 1: Water Use Reduction

Required

Intent: Reduce the burden on municipal water supply and wastewater systems by increasing the water efficiency within the building.

A baseline and design model of water use was designed and the current design building is set to use 20% less water than the baseline. The Baseline conditions are shown below.

Table 25: Baseline Condition for Water Reduction

Commercial Fixtures, Fittings, and Appliances	Current Baseline (Imperial Units)		
Commercial toilets	1.6 gallons per flush (gpf) Except blow-out fixtures: 3.5 (gpf)		
Commercial Urinals	1.0(gpf)		
Commercial Lavatory (restroom) faucets	2.2 gallons per minute (gpm) at 60 pounds per square inch (psi), private applications only (hotel or motel guest rooms, hospital patient rooms) 0.5 (gpm) at 60 (psi) all others except private applications 0.25 gallons per cycle for metering faucets		
Showerheads	2.5 (gpm) at 80 (psi) per shower stall		
For projects with commercial pre-rinse spray valves, the flow rate must comply with the ASME A112.18.1 standard of 1.6 gpm or less.			

WE Credit 1: Water Efficient Landscaping

Achieved: 0 of 2-4 Points

Intent: To limit or eliminate the use of potable water or other natural surface or subsurface water resources available on or near the project site for landscape irrigation.

This credit was not sought after for 75 Ames Street because there is no need for an irrigation system.

WE Credit 2: Innovative Wastewater Technologies

Achieved: 0 of 2 Points

Intent: Increasing the local aquifer recharge and reducing wastewater generation and potable water demand.

No points were achieved for this credit. Potable water use for the building sewage conveyance could not be cut by 50%.

Nathaniel J. Mooney | Mechanical | Dr. William Bahnfleth

Final Report

WE Credit 3: Water Use Reduction

Achieved: 2 of 2-4 Points

Intent: To further increase water efficiency within buildings to reduce the burden on municipal water supply and waste water systems

Strategies have been implemented by 75 Ames that in aggregate use 30% less water than the water use baseline with the design shown in WE Prerequisite 1: Water Use Reduction.

Energy & Atmosphere

EA Prerequisite 1: Fundamental Commissioning of Building Energy Systems

Required

Intent: This prerequisite verifies that the project's energy-related systems are all installed, and calibrated to preform to the owner's project requirements, basis of design and construction documents.

Commissioning processes and activities were completed by a project team to reduce energy use, lower operating costs, have fewer contractor callbacks, have better building documentation, have improved occupant productivity and verify that the system is operating in accordance with the owner's project requirements.

EA Prerequisite 2: Minimum Energy Performance Required

Intent: Prerequisite 2 establish the minimum level of energy efficiency for the proposed building and systems to reduce environmental and economic impacts associated with excessive energy use.

A whole building energy simulation was run to determine 75 Ames Streets performance when compared to ASHRAE Standard 90.1 baseline. An energy model indicates a 24% energy savings compared to the baseline.

EA Prerequisite 3: Fundamental Refrigerant Management Required

Intent: To prevent stratospheric ozone depletion.

Refrigerants R-134A and R-123 are used in this project in place of CFC refrigerants.

Nathaniel J. Mooney | Mechanical | Dr. William Bahnfleth | Final Report

EA Credit 1: Optimize Energy Performance

Achieved: 5 of 1-19 Points

Intent: To reduce environmental and economic impacts associated with excessive energy use by incentivizing buildings to be designed at increasing levels of energy performance beyond the prerequisite standard.

In the whole building energy simulation showed at least 20% better performance than the baseline design. From the table supplied by the LEED 2009 Rating for New Construction this corresponds with 5 points.

EA Credit 2: On-site Renewable Energy

Achieved: 0 of 1-7 Points

Intent: To encourage, recognize and incentivize increasing levels of on-site renewable energy self-supply to reduce environmental and economical impacts associated with fossil fuel energy use.

There are no designs for on-site renewable energy for this project.

EA Credit 3: Enhanced Commissioning

Achieved: 2 of 2 Points

Intent: To begin the commissioning process early in the process and execute additional activities after systems performance verification is complete.

In addition to EA Prerequisite 1 additional commissioning processes were added. Such as prior to the start of construction documents phase an independent commissioning authority was designated to lead, review, and oversee the completion of all commissioning process surfaces. This commissioning authority is documented as having commissioning authority experience in at least 2 building projects. More info can be found in the LEED Reference Guide For Green Building Design and Construction 2009.

EA Credit 4: Enhanced Refrigerant Management

Achieved: 2 of 2 Points

Intent: To reduce ozone depletion and support early compliance with the Montreal Protocol and minimize the direct contributions to climate change.

Look too Appendix for detailed analysis of refrigeration management analysis.

EA Credit 5: Measurement and Verification

Achieved: 1 of 3 Points

Intent: To provide for the ongoing accountability of building energy consumption over time.

An account was registered for this project on ENERGY STAR's Portfolio Manager Tool and the project is shared with the USGBC master account to meet MPR 6

EA Credit 6: Green Power

Achieved: 0 of 2 Points

Intent: To encourage the development and use of grid-source, renewable energy technologies on a net zero pollution basis.

It was not sought after to engage in a 2-year renewable energy contract to provide 35% of the building's electricity from renewable resources. So this credit is not met.

Materials & Resources

MR Prerequisite 1: Storage and Collection of Recyclables Required

Intent: To facilitate the reduction of waste generated by building occupants that is hauled to and disposed of in landfills by providing recycling.

75 Ames complies with this Prerequisite. There will be dedicated recycling areas for collection and storage in the entire building. The recyclable materials include paper, cardboard, glass, plastics, and metals.

MR Credit 1.1: Building Reuse—Maintain Existing Walls, Floors and Roof

Achieved: 0 of 1-3 Points

Intent: To extend the lifecycle of existing buildings, conserve resources, retain cultural resources, reduce wastes, and reduce the environmental impact of new buildings as they relate to materials manufacturing and transport.

An existing structure was not used for this project thus there were no existing walls, floors or roofs to reuse and this credit is not passed.

MR Credit 1.2: Building Reuse—Maintain Interior Nonstructural **Elements**

Achieved: 0 of 1 Point

Intent: To extend the lifecycle of existing buildings, conserve resources, retain cultural resources, reduce wastes, and reduce the environmental impact of new buildings as they relate to materials manufacturing and transport.

An existing structure was not used for this project thus there were no existing nonstructural interior elements could be reused.

MR Credit 2: Construction Waste Management

Achieved: 2 of 1-2 Points

Intent: To redirect recyclable materials from construction and demolition away from landfills and incineration facilities, and back to the manufacturing process and redirect the reusable materials to the appropriate sites.

75 Ames Street is planning on recycling/recovering 75% or the materials from construction and demolition.

MR Credit 3: Materials Reuse

Achieved: 0 of 1-2 Points

Intent: To reuse building materials and products to reduce demand for virgin materials and reduce waste, thereby lessening impacts associated with the extraction and processing of virgin resources.

The reuse of building materials is not an option for 75 AMES and thus the requirements for this credit cannot be met.

MR Credit 4: Recycled Content

Achieved: 1 of 1-2 Points

Intent: To increase demand for building products that incorporate recycled content materials, thereby reducing impacts resulting from extraction and processing of virgin materials.

The sum of the post-consumer recycled content plus one half of the pre-consumer content constitutes 10%, based on cost, of the total value of materials in the project. This makes 75 Ames eligible for 1 point.

MR Credit 5: Regional Materials

Achieved: 1 of 1-2 Points

Intent: To increase the demand for building materials and products that are extracted and manufactured close to the building and thereby supporting the use of indigenous resources and reducing the environmental impacts resulting from the transportation of resources.

10%, based on cost, of the materials for 75 Ames are extracted, harvested, or recovered, as well as manufactured within 500 miles.

MR Credit 6: Rapidly Renewable Materials

Achieved: 0 of 1 Point

Intent: To reduce use of and depletion of finite raw materials and long-cycle renewable materials. This is achieved by replacing these materials with rapidly renewable ones.

This project was unable to use 2.5% of the total value of building materials and products on rapidly renewable resources.

MR Credit 7: Certified Wood

Achieved: 0 of 1 Point

Intent: To encourage environmentally responsible forest management.

50% wood, based on cost, was unable to be obtained in accordance with certified Forest Stewardship Council's principles and criteria.

Indoor Environmental Quality

IE Q Prerequisite 1: Minimum Indoor Air Quality Performance Required

Intent: To establish minimum indoor air quality (IAQ) performance to enhance indoor air quality in buildings, thus contributing to the comfort and well being of the occupants.

The minimum requirements of ASHRAE Standard 62.1-2007, Ventilation for Acceptable Indoor Air Quality are met for the design of this building. Therefore 75 Ames passes this prerequisite.

IE Q Prerequisite 2: Environmental Tobacco Smoke (ET S) Control Required

Intent: To prevent or minimize exposure of building occupants, indoor air distribution systems to environmental tobacco smoke.

Smoking is prohibited in the building and within 25 feet of entries, outdoor air intakes and operable windows. Signage is provided to allow smoking in designated areas, prohibit smoking in designated areas.

IE Q Credit 1: Outdoor Air Delivery Monitoring

Achieved: 1 of 1 Point

Intent: To provide capacity for ventilation system monitoring to help promote occupant comfort and well-being.

A building automated system is used along with CO2 sensors to maintain design minimum requirements throughout the building. 75 Ames Street is a 100% outdoor air system therefore it complies with all ventilation regulations stated in ASHRAE Standard 62.1.

IE Q Credit 2: Increased Ventilation

Achieved: 1 of 1 Point

Intent: To provide additional outdoor air ventilation to improve indoor air quality (IAQ) and promote occupant well being and comfort.

Ventilation calculations were made and 75 Ames far surpasses the ventilation needs being a 100% outside air building. The outdoor air ventilation sheet and a LEED summary Report are provided in APPENDIX A.

IE Q Credit 3.1: Construction Indoor Air Quality Management Plan—During Construction

Achieved: 1 of 1 Point

Intent: To reduce indoor air quality (IAQ) problems resulting from construction or renovation and promote the comfort and well-being of construction workers and building occupants.

75 Ames is to follow the control measures of the Sheet Metal and Air Conditioning National Contractors Association (SMACNA) IAQ Guidelines For Occupied Buildings Under Construction. On site and installed absorptive materials are to be are protected from moisture. And permanently installed air handlers used during construction have a filtration media with a minimum efficiency reporting value (MERV) of 8 at each return grille. Filters are to be replaced before building occupancy.

Nathaniel J. Mooney

IE Q Credit 3.2: Construction Indoor Air Quality Management Plan—Before Occupancy

Achieved: 1 of 1 Point

Intent: To reduce indoor air quality (IAQ) problems resulting from construction or renovation and promote the comfort and well-being of construction workers and building occupants.

A management plan is to be put in place prior to occupancy with all interior finishes installed. New filtration medial shall be installed and a building flush out is to be performed by supplying a total air volume of 14,000 cubic feet per minute of outdoor air per square foot of floor area while maintaining an internal temperature of at least 60 F and a relative humidity of 60%.

IE Q Credit 4.1: Low-Emitting Materials—Adhesives and Sealants

Achieved: 1 of 1 Point

Intent: To reduce the quantity of indoor air contaminants that are odorous, irritating and/or harmful to the comfort and well-being of installers and occupants.

Adhesives and sealants used on the interior of 75 Ames Street Building comply with the following requirements in table 26

Nathaniel J. Mooney | Mechanical | Dr. William Bahnfleth

Table 26: Low Emitting Materials-Adhesives and Sealants

Architectural			VOC Limit
Applications	(g/L less water)	Specialty Applications	(g/L less water)
Indoor carpet adhesives	50	PVC welding	510
Carpet pad adhesives	50	CPVC welding	
Wood flooring adhesives	100	ABS welding	325
Rubber floor adhesives	60	Plastic cement welding	250
Subfloor adhesives	50	Adhesive primer for plastic	550
Ceramic tile adhesives	65	Contact adhesive	80
VCT and asphalt adhesives	50	Special purpose contact adhesive	250
Drywall and panel adhesives	50	Structural wood member adhesive	140
Cove base adhesives	50	Sheet applied rubber lining operations	850
Multipurpose construction adhesives	70	Top and trim adhesive	250
Structural glazing adhesives	100		
Substrate Specific	VOC Limit	Sealants	VOC Limit
Applications	(g/L less water)	Scalalits	(g/L less water)
Metal to metal	30	Architectural	250
Plastic foams	50	Roadway	250
Porous material (except wood)	50	Other	420
Wood	30		
Fiberglass	80		
Sealant Primers	VOC Limit (g/L less water)		
Architectural,	250		
nonporous			
Architectural, porous	775		
Other	750		

Aerosol Adhesives must comply with Green Seal Standard for Commercial Adhesives GS-36 requirements. The limit can be seen in table 27 below.

Table 27: Low Emitting Materials- Areosol Adhesives and Sealants

Aerosol Adhesives	VOC Limit
General purpose mist spray	65% VOCs by weight
General purpose web spray	55% VOCs by weight
Special purpose aerosol adhesives (all types)	70% VOCs by weight

Nathaniel J. Mooney | Mechanical | Dr. William Bahnfleth | Final Report | 04/03/13

IE Q Credit 4.2: Low-Emitting Materials—Paints and Coatings

Achieved: 1 of 1 Point

Intent: To reduce the quantity of indoor air contaminants that are odorous, irritating and/or harmful to the comfort and well-being of installers and occupants.

Paints used within the building do not exceed the volatile organic compound content limits established in the Green Seal Standard GS-11, Paints, 1st edition. Any anti corrosive and anti-rust materials will not exceed VOC content limit of 250 g/L and clear wood finishes, floor coatings, stains, primers, sealers, and shellacs will not exceed the VOC content limits established in South Coast Air Quality Management District (SCAQMD) Rule 1113, Architectural Coatings.

IE Q Credit 4.3: Low-Emitting Materials—Flooring Systems

Achieved: 1 of 1 Point

Intent: To reduce the quantity of indoor air contaminants that are odorous, irritating and/or harmful to the comfort and well-being of installers and occupants.

This project achieves this credit by following the Carpet and Rug Institute Green Label program's testing and product requirements for installed carpets and requirements for carpet cushions. The carpet adhesives meet IEQ Credit 4.1 Adhesives and Sealants. The Floor Score standard is met for hard surface flooring. Any concrete, wood, bamboo and cork floor finishes (sealer, stain, and finish) meet the requirements of South Coast Air Quality Management District (SCAQMD) Rule 1113). Lastly all tile setting adhesives and grout meet SCAQMD Rule u68.

IE Q Credit 4.4: Low-Emitting Materials—Composite Wood and **Agrifiber Products**

Achieved: 0 of 1 Point

Intent: To reduce the quantity of indoor air contaminants that are odorous, irritating and/or harmful to the comfort and well-being of installers and occupants.

75 Ames building does not pass this credit. Composite wood and agrifiber products used in the building contain added urea-formaldehyde resin that disqualifies this project for the credit.

IE Q Credit 5: Indoor Chemical and Pollutant Source Control

Achieved: 1 of 1 Point

Intent: To minimize occupant exposure to potentially hazardous particulates and chemical pollutants.

Cross contamination of regularly occupied areas by chemical pollutants is minimized. A MERV 13 is installed for all regularly occupied spaces. A permanent entryway system is to be provided. And Spaces with hazardous gases or chemicals are exhausted. In appendix D are the calculations for indoor chemical & pollutant source control.

IE Q Credit 6.1: Controllability of Systems—Lighting

Achieved: 1 of 1 Point

Intent: To provide a high level of lighting systems control by individual occupants or groups in multi-occupant spaces and promote their productivity, comfort and well-being.

Individual lighting controls are provided to at least 90% of the building occupants to enable the adjustments to suit individual task needs and preferences. Lighting controls are also supplied to all shared spaces to make adjustments for group needs.

IE Q Credit 6.2: Controllability of Systems—Thermal Comfort

Achieved: 0 of 1 Point

Intent: To provide a high level of lighting systems control by individual occupants or groups in multi-occupant spaces and promote their productivity, comfort and well-being.

Individual comfort controls were unable to be supplied for at least 50% of building occupants. Therefore this credit is not awarded.

IE Q Credit 7.1: Thermal Comfort—Design

Achieved: 1 of 1 Point

Intent: To provide a comfortable thermal environment that promotes occupant productivity and well-being.

Heating ventilation and air conditioning are designed to comply with ASHRAE 55 - 2004 Thermal Comfort Conditions for Human Occupancy. A detailed narrative provided by the HVAC engineers at BR+A is provided in appendix E

IE Q Credit 7.2: Thermal Comfort—Verification

Achieved: 0 of 1 point in addition to IE Q credit 7.1

Intent: To provide for the assessment of building occupant thermal comfort over time.

A permanent monitoring system will not be installed to track the building performance and ensure it meets desired comfort criteria as determined by IE Q 7.1 Thermal Comfort Design. Therefore this credit is not met.

IE Q Credit 8.1: Daylight and Views—Daylight

Achieved: 0 of 1 Point

Intent: To provide building occupants with a connection between indoors and outdoors through the introduction of daylight and views into the regularly occupied areas of the building.

The applicable spaces of 75 Ames do not meet the day lighting criteria set by this credit of minimum daylight illuminance levels of 10 foot-candles and a maximum of 500 footcandles in clear sky conditions.

IE Q Credit 8.2: Daylight and Views—Views

Achieved: 0 of 1 Point

Intent: To provide building occupants a connection to the outdoors through the introduction of daylight and views into the regularly occupied areas of the building.

A direct line of sight to the outdoor environment via glazing between 30 inches and 90 inches above the finish floor for 90% of the building occupants could not be achieved for this project.

Nathaniel J. Mooney

Innovation in Design

ID Credit 1: Innovation in Design

Achieved: 3 of 1-5 Points

Intent: To provide design teams and projects the opportunity to achieve exceptional performance above the requirements set by LEED Green Buildings Rating System and/or innovative performance in Green Building categories not specifically addressed by the LEED Green Building Rating System.

There are three ideas this project is looking at towards this credit though the use of pilot credits.

- 1) A comprehensive transport management plan is to be in place
- 2) Dispersion analysis as part of chemical management plan. A comprehensive approach will be taken to cover spills, access to the building, and handling protocols.
- 3) This building shall be used as an educational tool to provide public education focusing on green building strategies and solutions.

ID Credit 2: LEE D Accredited Professional

Achieved: 1 of 1 Point

Intent: To support and encourage the design integration required by LEED to streamline the application and certification process.

At least one principal participant of the project team is a LEED Accredited Professional.

Regional Priority

RP Credit 1: Regional Priority

Achieved: 4 of 1-4 Points

Intent: To provide an incentive for the achievement of credits that address geographically specific environmental priorities.

75 Ames Street has met the regional priority credit by complying with credits SSc3, SSc6.1, SSc7.1 and SSc7.1. This qualifies the project for 4 regional priority credits.

Overall Evaluation

75 Ames's mechanical system was designed well and met the requirements for the project type well. The total mechanical system has a cost of \$26,693,790.00, which is 16% of the total building cost. The main contributors to this cost were all the large mechanical equipment for the heating, and cooling plants, and the air handlers. This building is set to run relatively efficiently, 20% better than the ASHRAE Baseline Standard, and costing only \$2,360,127.50 per year to operate. Three floors were dedicated to the mechanical equipment, and mechanical shafts only took up 19,443 SF of the entire high-rise.

Being a 100% outside air building 75 Ames easily met the ASHRAE 62.1 Standards for ventilation. Although using return air from not critical spaces could be looked into to help more with energy savings. One dilemma with this would have to add in extra return duct risers to the structure, taking up more valuable square footage.

Another idea for energy savings could come from the use of an Aircuity Optinet System. This is a unique system, which takes samples of air remotely throughout a buildings space and routes them to a centralized sensor. By sampling the air quality the Optinet system can determine the needed ventilation rates throughout the building and allow for labs and other critical areas to be turned down in times where contamination is low. This may have an added up front cost to the entire system, but potentially this could lead to more energy savings and end up paying for itself over time.

75 Ames does a good job with it's mechanical design and is making a great effort to be LEED Silver. The idea of designing the building for future changes to the program limits the energy savings potential of the building. If instead 75 Ames was designed for day one the changes could result in less total cost per year. Also the use of an Aircuity Optinet system would be very helpful in lab areas to turn down ventilation rates but maintain comfort ability in the areas.

Alternatives Considered

In preparation for the proposal several different ideas where considered to minimize operating costs and improve the reliability of the system. Below you will find the Ideas considered and a brief explanation of them.

Solar Thermal Heating

A solar thermal system could be placed on the roof of the building to utilize solar energy for hot water heating. This could then lessen the heating bill and carbon footprint of the buildings. One barrier to consider is the amount of heating available depends upon the area available for the collectors and the clearness index of the area. Since 75 Ames is a 250,000 SF building using 348.500 therms of natural gas costing \$5.57K annually this could be a potential cost saver, but there does seem to be a lack of space for the collectors.

Nathaniel J. Mooney

Mechanical

Dr. William Bahnfleth

Final Report

04/03/13

Rain Water Collection

A rainwater harvesting system could help 75 Ames become a more sustainable building. By collecting rain for use in toilet flushing for example, a great deal of clean water can be saved. There is a roof area of roughly 29,000 SF that could be utilized for rainwater collection.

Return Air from offices to be used.

75 Ames was designed for future renovations and it is because of this all areas are 100% outside air and no return air is utilized for any spaces. There is a large potential for energy savings here. In designing two separate systems, one for labs and one for administration, although the mechanical design will not be as flexible, it will be more efficient.

Depth I Laboratory Demand Controlled Ventilation Alternate

Objective

The goal of adding a demand control ventilation system such as an Aircuity Optinet was to enable labs to be turned down to a much lower air change rate (minimum 2 ACH) lowering the total air supplied to labs and the reheat needed. Typically labs utilize a high air change per hour rate, in this buildings case it was 6-12 ACH. This is to be able to keep the environment safe from any contaminations due to spills or ongoing experiments. A system such as Aircuity's Optinet can test the air quality of multiple rooms every 15 minutes ensuring a safe and comfortable environment. The system tests for VOC's, ammonia, chemical vapors and particulates. When contaminates are tested below the set point the air changes may be lowered. Instead of diluting clean air with clean air, the air is only supplied when needed. When contaminates are sensed higher air change rates 12-15 ACH are utilized to eliminate the risk as quickly as possible. Since large contaminations are not too common, this allows the normal state of ventilation to be much lower than normally designed leading to lower air and reheat, supplied to the space.

For labs just using occupancy sensors for DCV is not advised. With occupancy sensors for labs it will take much longer to significantly remove a contaminants from a space especially if using system turndowns at night where something may accidently spill. The most effective and safe way to ventilate labs is testing the air VOC frequently to determine the air change rate.

Schematic

Figure 16 shows a typical arraignment for the Aircuity Optinet System. Multiple rooms can be sensed by the central sensor suite. Multiple rooms can be sensed by an air data router which then sends the sample to the sensor suite. The sensor suite is able to sense 15-20 areas every 15 minutes. Using a Photoionization detectors total volume of contaminants (PID TVOC) sensor hundreds of commonly used chemicals such as ammonia can be detected. A metal oxide sensor (MOD) is used to sense broader chemical contaminants, lasers are used to determine particle counts, CO2 sensors are used and dew point or humidity sensors allow for greater control and monitoring. All this data is then sent to the building automated computer network where any changes to room ventilation may be made. This data is then also saved online to see the typical daily space contaminates. Knowing this information can ensure safe lab procedures are being utilized to minimize room contaminates and occupancy safety.

Figure 16: Aircuity Schematic courtesy of Aircuity

Design Considerations

It must be noted that it was assumed that the Aircuity System did no add any additional load to the spaces in which it was placed.

One big design consideration is the first cost. An Aircuity system is generally budgeted at \$5000 per sensed location. For labs larger than 1200 square it is required that there is 1 sensor for every 1200 square feet. There is also an optional yearly maintenance cost of \$20963, which is waived the first year. Since there is this large upfront only the larger rooms were chosen to optimize the systems effect. The rooms chosen can be seen in Appendix F

To determine the savings TRANE TRACE 700 was used, most data stayed the same as the original model except for the minimum ventilation rates.

Table 28: Trane Trace 700 DCV Inputs

TRANE TRACE 700 : 75	Ames Inputs				
Location/Weather		Во	ston, Mass	sachusetts	
System	VAV Sys	sten	n with rehe	at (30% Min	Flow)
Room Set Points			Winter (°F)	Summer (°F)
	Temperature			72	<i>75</i>
	Humidity		25	% (±5)	50% (±5)
Internal Loads			Lighting	(Watts/SF)	Equipment (Watts/SF)
	Office			1.2	2
	Labs			2	10
	Tissue Culture:			2	20
Airside Components	100% Outside Air System				
	Duct Supply air Temp Max (°F)		55		
	Duct Supply air Min (°F)		52		
	Humidity ratio difference (gr/II	b.)	0.0012		
Waterside		E	WT (°F)	LWT (°F)	ΔT (°F)
Components	Chiller		56	42	14
	Evaporator		95	85	10
Schedules	During unoccupied times ventilation rates are lowered. See Appendix G				
Ventilation Rates			Origi	nal	Aircuity
	Labs		6 to 12		2 to 4 ACH
	Office		20 CFM Pe	r Person	-

Energy Usage Estimates

As seen in the table and below the Aircuity system met the expectation of lowering both electrical and gas power consumption. The Electrical is primarily due to a reduction in fans and the gas reduction is due to the reduction of reheat needed to heat up incoming air to ventilate the labs.

The following results were obtained from the TRANE TRACE 700 model:

Nathaniel J. Mooney | Mechanical | Dr. William Bahnfleth | Final Report

Table 29: DCV Annual Energy Cost Comparison

	Electricity (kWh)	Natural Gas (Therms)	Electricity Cost Per year	Natural Gas Cost per year	Total Cost Per Year
Original System	9,985,524.00	107,047.00	\$2,007,090.32	\$170,954.06	\$2,178,044.38
DCV	9,059,513.00	105,222.00	\$1,820,962.11	\$168,039.53	\$1,989,001.65
Difference	926,011.00	1,825.00	\$ 186,128.21	\$2,914.53	\$ 189,042.74
				% Change	-9%

Table 29 above shows the potential energy savings in adding an Aircuity-Optinet system. Both natural gas heating and electricity cost are lowered due to less need to reheat the supplied air and from the fan running at lower levels. This system decreases the total energy usage by a total of 9 percent. Below table 30 and graphs 15 and 17 give detailed monthly energy consumption for the building using both the original system and the alternate Aircuity Optinet demand controlled ventilation system. The system uses consistently less electricity per month shown in graph 15 and savings on heating are saved primarily during the summer months as shown in graph 17.

Table 30: Original System vs. DCV Energy Usage

		Original System VAV Reheat		Alternate DCV	
		Electric KWH	Gas Therms	Electric KWH	Gas Therms
Energy Usage	Jan	721,666	17,302	630,014	18,918
	Feb	654,882	16,453	571,874	18,323
	Mar	791,432	10,610	694,572	10,289
	Apr	746,783	6,680	659,139	4,954
	May	894,909	6,230	811,156	4,473
	June	978,922	4,318	923,273	3,839
	July	962,894	1,243	947,253	3,007
	Aug	1,040,655	3,556	987,417	3,922
	Sept	847,768	6,004	766,895	4,229
	Oct	895,855	7,054	800,672	4,943
	Nov	771,446	8,173	664,497	6,118
	Dec	678,311	19,423	602,751	22,206
	Total	9,985,524	107,047	9,059,513	105,222
Difference					
Electrical KWH	Gas Therms				
-926,011	-1,825				

Nathaniel J. Mooney Mechanical Dr. William Bahnfleth

Final Report

Figure 17: VAV vs. Aircuity DCV Electricity Usage

Figure 18: Aircuity Optinet DCV Electrical Breakdown

Figure 19: VAV vs. Aircuity Optinet DCV Gas consumption comparison

Operating Costs

The upfront costs for 75 Ames was \$5000 per sensed room and a \$20963 optional yearly maintenance fee, which is waived the first year. As seen in the table below the Aircuity system is able to pay for itself within .85 years, even with the yearly maintenance, by saving \$ 189,042.74 annually. The addition of this system would mean the saving of over \$1,000,000 within 10 years.

Table 31: 10 Year Life Cycle Cost Compared To VAV

10 Year Life Cycle Cost Analysis							
YEAR	Original System VAV Reheat	DCV - Aircuity Alternate	With Maintanance First Year Free				
0	\$0	\$160,000.00	\$160,000.00				
1	\$2,178,044.38	\$2,149,001.65	\$2,149,001.65				
2	\$4,356,088.77	\$4,138,003.29	\$4,158,966.29				
3	\$6,534,133.15	\$6,127,004.94	\$6,168,930.94				
4	\$8,712,177.53	\$8,116,006.59	\$8,178,895.59				
5	\$10,890,221.92	\$10,105,008.24	\$10,188,860.24				
6	\$13,068,266.30	\$12,094,009.88	\$12,198,824.88				
7	\$15,246,310.68	\$14,083,011.53	\$14,208,789.53				
8	\$17,424,355.06	\$16,072,013.18	\$16,218,754.18				
9	\$19,602,399.45	\$18,061,014.82	\$18,228,718.82				
10	\$21,780,443.83	\$20,050,016.47	\$20,238,683.47				

Emissions Estimate

Through the use of Trace 700's Environmental Impact Analysis the change in pollutant output from the original system can be studied. The three main pollutants are CO2, SO2, and NOX. By reducing the amount of electricity used compared to the original design the environmental impact will be changed. In the table below it can be seen that each pollutant has been decreased by 9.27% compared to the original system.

Table 32: Aircuity Optinet DCV Environmental Impact Compared to Original

ENVIRONMENTAL IMPACT								
	Unit	Original System VAV Reheat	DCV - Aircuity Alternate	% Change	Difference			
CO2	lbm/yr	876,396,480	795,123,520	-9.27%	81,272,960			
SO2	gm/yr	2,742,078	2,487,791	-9.27%	254,287			
NOX	gm/yr	742,165	673,340	-9.27%	68,825			

Nathaniel J. Mooney

Mechanical

Dr. William Bahnfleth

Final Report

04/03/13

Summary

For only a small upfront investment (\$160,000) an Aircuity system is able to be installed into 75 Ames Street and be paid off within under a year. Not only does this system end up saving The Broad Institute (75 Ames Street Owners) over \$1 million in 10 years but also reduces 3 of the main environmental contaminants by 9 % and taking 81,272,960 lbm/yr of carbon dioxide out of the air. This system would be a great addition for 75 Ames Street and would not be too much of an economic concern.

Depth II: Chilled Beams

Objectives

Chilled beams are most successful in rooms with high sensible loads, like offices and some labs. By alternating the mechanical system of 75 Ames from a variable air volume system to a chilled beam system, the hope is to reduce life cycle costs by significant savings in fan energy and reheat energy. In a typical variable air volume system large amounts of air are supplied to a space to cool or heat the room. Using chilled beams allows the system to supply less air and switches the task of cooling the room to the chilled beams.

Design Considerations

Active vs. Passive

There are two types of chilled beams to consider in designing a system, active and passive beams. A passive beam relies solely on free convection to cool or heat a room. Passive beams have lower cooling capacities compared to active beams and require another source to supply the supply air to the room so they are best implemented in retrofits.

Figure 20: Passive Chilled Beam Schematic Courtesy of PRICE

Active beams are more complex than the passive. Active beams have a higher capacity than the passive beams that depends on the supply water temperature, room temperature, and the primary airflow. Active beams have primarily been selected for the 75 Ames project to provide the most effective and efficient cooling.

Figure 21: Active Chilled Beam Schematic Courtesy of PRICE

Pipe Arrangement

Another important part of a chilled beams system to look at is how the system shall be heated. Chilled beams allow for two different configurations a 2-pipe (cooling only) system, and a 4-pipe (cooling and heating). The Two different configurations are shown in the figure 22below. The two pipe configurations are more desirable in that it is cheaper and more efficient. But the 4-pipe offers the ability of heating a space with one system rather than needing some other system to heat the space.

For 75 Ames Street perimeter rooms utilized the 2-pipe system with radiant baseboard heating on the exterior walls. For the interior spaces the 4-pipe system shall be utilized to meet the heating and cooling needs.

Figure 22: 2-Pipe vs. 4-Pipe Arrangement Courtesy of PRICE

Sizing and Selection

Below is a detailed example of how the chilled beams were chosen for each room. Room 6012, a typical office space seen below in figure 23 was used.

Figure 23: Typical Office Room

To determine the sensible and latent loads in a space the loads supplied from the occupants, lighting and equipment must be analyzed. This can be done by hand or with the help of Trane TRACE 700. Using the TRACE model it is possible to calculate the sensible and latent loads to each space much faster than by hand and the values from below were taken from this model.

2) Determine the Fresh Air Flow Rate

Ventilation rates were taken from ASHRAE Standard 62.1-2010. Using these ventilation rates per person and per area, and knowing the area and number of people in the room the Fresh airflow rate can be found. Values of 5 cfm/person and 0.06cfm/ft² for and office were found and used for this space.

$$V_{bz}$$
=Rp*Pz+Ra*Az
 V_{bz} =5*1+0.06*109=11.54 cfm

3) Determine The Cooling Capacity of The Air

The supply air humidity ratio is found to be w_{supply}= 0.007997lbw/lbDA and for the room w_{room}=0.009233 lb_w/lbDA

$$\begin{split} &Q_{latent} = 4840 \ V_{bz} \ (w_{room} - w_{supply}) \\ &Q_{latent} = 4840 \ (11.54)(0.009233 - 0.007997) \\ &Q_{latent} = 69 \ BTU/hr \\ &Q_{sensible} = 1.08 \ V_{bz} \ (T_{room} - T_{supply}) \\ &Q_{sensible} = 1.08 \ (11.54) \ (75 - 55) \\ &Q_{sensible} = 249.264 \end{split}$$

4) Determine Required Supply Air Volume To Remove Latent Load

For the chilled beams to work effectively the latent load must be removed from the room before the sensible load can be handled. For this room since the room latent load of 152.5 BTU/hr is greater than 69 BTU/hr, the supply air must be increased. To determine how much the supply air must now be we use the equation below.

This gives a new sensible capacity of

$$Q_{sensible}$$
=1.08 V_{bz} (T_{room} - T_{supply})
 $Q_{sensible}$ = 1.08 (25.41) (75-55)
 $Q_{sensible}$ = 548.856 BTU/hr

5) Determine the Sensible Load Radiant Requirements

$$Q_{sensible,radiant} = 1332-548.856 = 783.144$$

6) Determine the Chilled Beam Size and Quantity

The Beam is sized based on the CFM requirements as well as the sensible cooling load and the number of beams. For this selection a chilled beam sized at 4 feet by 1 foot to fit in the 2x2 ACT and take up a smaller amount of ceiling space from the room. Using the performance data provided by PRICE in Table 33 below a 2 Way, 4pipe active chilled beam with 24 cfm primary air was chosen and found to have a capacity of 1618 btu/hr total.

Table 33: 12" 2 Way 4 Pipe Active Chilled Beams Performance Data Courtesy Of PRICE HVAC

Performance Data - (4 Pipe) Cooling

ACBL, 2 way, 12 inch - (4 pipe) Cooling

						Capacity - 4 Pipe					
Unit	l-l-4	Air Flow		Plenum	د	Cooling					
Length ft	Inlet Size	Nozzle Size	cfm Total (Primary)	Static Pres- sure in.	Sound NC	Coil Btu/h	Transfer Efficiency Btu/h cfm	Total Btu/h	Head Loss ft H:0	Induction Ratio	Throw ft
	5		9	0.21		645	72	820		3.60	0-1-2
	5	20	14	0.49		926	66	1198		3.60	1-1-5
	5		19	0.82		1159	63	1519		3.60	1-2-8
	5		15	0.20		846	56	1138		2.90	0-1-4
	5	30	24	0.49		1151	48	1618		2.90	1-3-9
	5		31	0.79	16	1357	44	1961		2.90	2-4-12
	5	40	21	0.20		949	45	1358	1.16	2.60	1-2-7
	5		34	0.49		1300	38	1962		2.60	2-4-12
	5		44	0.79	20	1534	35	2391		2.60	3-8-14
	5	50	26	0.20		939	36	1445		2.20	1-2-8
4 ft	5		43	0.50	16	1297	30	2134		2.20	3-6-13
	5		55	0.79	23	1514	28	2585		2.20	4-9-15
	5		39	0.20		1186	30	1945		2.10	2-4-12
	5	60	64	0.51	23	1587	25	2833		2.10	5-10-16
	5		82	0.80	29	1831	22	3428		2.10	8-12-18
	5		58	0.20		1343	23	2472		1.50	3-6-13
	5	70	94	0.50	27	1739	18	3569		1.50	7-12-17
	5		121	0.80	34	1985	16	4341		1.50	10-14-19
	5		80	0.20	20	1321	17	2879		1.20	4-9-15
	5	80	131	0.50	33	1779	14	4330		1.20	9-13-19
	4x10		169	0.80	35	2067	12	5358		1.20	12-15-21

This process was done for each room in 75 Ames Street in an Excel document. This schedule can be found in Appendix H.

Airside Summary

A primary savings is found in the supply air volume for 75 Ames Street. The air-handling units supply 55 F air, which is used to cool or heat a space. By choosing chilled beams over a conventional variable air volume system air the primary cooling is supplied by the chilled beams within the space. Fresh air is only supplied in a chilled beam system to eliminate the latent load, which is usually much less than the sensible load, or to meet ventilation requirements. Using TRANE TRACE 700 software the conventional VAV system was modeled against the Active chilled beams.

Nathaniel J. Mooney | Mechanical | Dr. William Bahnfleth | Final Report | 04/03/13 | 72

-32%

UNIT Heating CFM SYSTEM 100 %OA Cooling CFM **EXISTING** VAV **AHU-1-2** 77,274 26,333 AHU-3-4 VAV 223,882 121,876 **REDESIGN** 77,274 26,333 **AHU-1-2 VAV** 0% 0% % CHANGE **AHU-3-4 ACTIVE CHILLED BEAMS** 82,552 82,552

Table 34: Supply Air Comparison for Original System and Chilled Beams

Because of this vast reduction in supply air by the addition of chilled beams to many spaces there are some savings available in the elimination of one of the four 28,750 CFM air handlers supplying the building. This elimination keeps the other three remaining air handlers at roughly the same CFM as they were in the original. This also means the downsizing of the exhaust air-handling units. The results can be seen in the table below.

-63%

Table 35: Air Handling Units Redesigned Supply For Chilled Beams System

% CHANGE

AHU Redesign						
Unit	Fan Type	# Fans	Original	Redesign		
AHU1	plenum	4	28750	30516		
AHU2	plenum	4	28750	30516		
AHU3	plenum	4	28750	30516		
AHU4	plenum	4	28750	ELIMINATED		
AHU5	plenum	4	15000	15000		
EAHU1	Cent.	5	57,500	45,774		
EAHU2	Cent.	5	57,500	45,774		
EAHU3	Cent.	3	30000	30000		

This new demand for supply air means the supply and exhaust fans can be downsized to meet the new requirements. The CFM calculated from TRACE above was used to calculate these new fan sizes. These calculations were performed using the fan affinity laws under the assumption that there is a constant pressure drop of 0.08" WG per 100' and the ductwork distribution is similar to the existing design.

Table 36: New Fan Sizing

	Fan Sizing								
Unit	Туре	Quantity	CFM	Min SP	HP	RPM			
	EXISTING								
AHU1	plenum	4	28750	7.5	75	1750			
AHU2	plenum	4	28750	7.5	75	1750			
AHU3	plenum	4	28750	7.5	75	1750			
AHU4	plenum	4	28750	7.5	75	1750			
AHU5	plenum	4	15000	7.5	50	1750			
EAHU1	Cent.	5	57,500	5.3	100	770			
EAHU2	Cent.	5	57,500	5.3	100	770			
EAHU3	Cent.	3	30000	4.5	50	1132			
		RED	ESIGN						
Unit	Туре	Quantity	CFM	Min SP	HP	RPM			
AHU1	plenum	4	30516	7.5	89.76	1858			
AHU2	plenum	4	30516	7.5	89.76	1858			
AHU3	plenum	4	30516	7.5	89.76	1858			
AHU5	plenum	4	15000	7.5	50	1750			
EAHU1	Cent.	5	45,774	5.3	50.46	613			
EAHU2	Cent.	5	45,774	5.3	50.46	613			
EAHU3	Cent.	3	30000	4.5	50	1132			

Waterside Summary

Chilled Water System

Separate chiller plants can be used in the design of chilled beams; this allows the chillers to operate at a higher coefficient of performance due to the higher supply water temperature to the beams, to avoid condensation. This is not the typical choice in design due to a higher installed cost.

A more common plant configuration for chilled beams is to use one set of chillers to make cold water at one temperature for the entire building. Some of this water will be sent to the primary cooling coils in the air-handling units and the rest is to be mixed with warm water, which is returning from the chilled beams. This design shall be utilized for the redesign of 75 Ames Street.

Figure 24: Chilled Water Supply Schematic

Chilled Water Pump Sizing

To size the chilled beam variable flow pump the total BTU/HR of 4582210.148 was determined for each space using the excel spreadsheet sizing each chilled beam. Sizing the pump GPM can be done using the equation below.

Q=500 x GPM x DT

Where...

DT=5

Q= 4582210 BTU/HR

GPM= (4582210 BTU/HR) / (5 x 500) = 1832.884 GPM

Now that the flow has been determined the pressure drop can be calculated to correctly sixe the pump. Due to similar designs for each floor the flow to each floor was determined by a floor area to service area ratio. Next a piping layout was determined for the 6th floor to determine the piping length and fittings that will add to the pressure drop. Pipes were sized based on a 4 ft per 100 ft maximum pressure drop for pipes larger than 2" and a max velocity of 4 fps for pipes 2" or smaller. The total head loss was determined to be 59 ft H2O for level 6. Further detail can be found in APPENDIX I

Table 37: Chilled Water Piping For Chilled Beams GPM, Size and Head.

	CHILLED BEAM AREA PER FLOOR						
Floor Number	AREA [FT^2]	PERCENT TOTAL AREA	GPM PER FLOOR	Pipe Size [IN]	Head [FT H2O]		
2	4807	4%	78	3	23.3		
3	7013	6%	114	3	34.0		
4	6611.1	6%	108	3	32.0		
5	6624.06	6%	108	3	32.1		
6	14575.124	13%	237	4	70.6		
7	16807.1	15%	273	5	<mark>81.4</mark>		
8	15341.99	14%	250	4	74.3		
9	14467.989	13%	235	4	70.1		
10	14180	13%	231	4	68.7		
11	12250	11%	199	4	59.3		
TOTAL	112677.617	100%	1833		545.7956831		

Using the max head loss of 81.4 FT H20 a pump was able to be selected from Bell & Gossett 1510 series catalog for centregufal pumps. The pump was selected using the pump curve below, with roughly 1500 GPM and 70 ft heat in feet. The result was a 40 HP pump on a variable frequency drive to meet the system curve.

Figure 25: Bell and Gossett Pump Selection Graph

Figure 26: Chilled Water Pump Curve

System Controls

Typically chilled beams are constant volume systems. But on occasion chilled beams used in line with a VAV box enabling an even less use of supply air. This can have troubles with controls and it must always be assured that each room maintains acceptable rates to deal with the latent loads and contain the room dew point.

Varying the water flow rate or supply temperature to the beam using a zone level thermostat is done to control the room temperature. Modulating the flow rate can typically produce a 7 or 8 degree Fahrenheit change in the supplied temperature. This small change reduces the beams sensible cooling rate by as much as 60%. Care must be taken to maintain a reasonable space dew point temperature and a chilled water supply temperature well above this value. Dew point sensors should be used to ensure proper levels are maintained. A dew point sensor would reset water temperature higher thus increasing the surface temperatures and not allowing condensate to form. A dew point sensor could also shut supply to the beam off and let the primary airflow bring the dew point back to the proper level. The beam supply is varied using a floating-point 2-way valve actuators providing on/off control. The zone thermostat controls the valves. Isolation Valves are used to isolate the chilled beams from the overall system if beams need maintenance or replacing.

Figure 27: Chilled Beams Chilled Water Piping Controls

Not only can sensors in the rooms be used to monitor comfort and the chilled beams performance, but moisture monitors on the pipes themselves can be installed on the coldest pipe locating in a room. When moisture is detected the water flow is shut down and will not restore until the moisture has been evaporated.

Labs tend to need to be more control strategies than normal office spaces. Along with the typical chilled beam controls a general exhaust is required for pressurization and fume hood turndown.

Energy Model

Trane Trace 700 was used to calculate the energy usage from a chilled beam. The Trace inputs are shown below.

Table 38: Trace Inputs for Chilled Beams

TRANE TRACE 700 : 75 Ames Inputs					
Location/Weather	Bosto	on, Massachusetts			
	VAV System w	vith reheat (30% N	1in Flow)		
System	Active Chilled Bea	ms (48 BTU/ (CFM	Primary Air)		
Room Set Points		Winter (°F)	Summer (°F)		
	Temperature	72	<i>75</i>		
	Humidity	25% (±5)	50% (±5)		
Internal Loads		Lighting (Watts/SF)	Equipment (Watts/SF)		
	Office	1.2	2		
	Labs	2	10		
	Tissue Culture:	2	20		
Airside Components	100% Outside Air System				
	Duct Supply air Temp Max (°F)	55			

	Duct Supply air Min (°F) Humidity ratio difference (gr/lb.)			52 0.0012		
Waterside		EW	「(°F)	LWT (°F)	ΔT (°F)	
Components	Chiller	56		42	14	
	Evaporator	95		85	10	
Schedules	During unoccupied times ventilation rates are lowered See Appendix G					
Ventilation Rates	Labs	6 to 12 ACH				
	Office		20	CFM Per Per	son	

Energy Analysis

Running the Trace model under the conditions noted in Table 38 there were very high-energy savings compared to the original system. The greatest energy savings comes from the electricity cost per year. The change to the chilled beams yields a saving of \$435,796.82 annually from electricity costs, and \$96,420.47 annually for natural gas costs. The total savings is \$532,217.29 per year. A detailed breakdown is shown below in tables 39 and 40.

Table 39: Utility Costs

Utility	Unit	Cost
Electricity	\$/KWH	0.201
Natural Gas	\$/Therm	1.597

Table 40: Chilled Beams Energy Cost Analysis

	Electricity (kWh)	Natural Gas (Therms)	Electricity Cost Per year	Natural Gas Cost per year	Total Cost Per Year
Original System	9,985,524.00	107,047.00	\$2,007,090.32	\$170,954.06	\$2,178,044.38
Chilled Beams	7,817,379.00	46,671.00	\$1,571,293.18	\$74,533.59	\$1,645,826.77
				% Change	-24%

The graph below (figures 28--29) shows a more detailed breakdown of energy usage by month and equipment. In figure 28 it can be seen the greatest savings are accumulated in the summer months due to the lowering of fan power needed to supply and cool a space.

Nathaniel J. Mooney | Mechanical | Dr. William Bahnfleth | Final Report

Figure 28: Original Vs. Chilled Beams Electricity usage

Great savings are also seen in the heating during the winter months in figure 29. This is due to the fact that the air does not have to be reheated to get back up to acceptable temperatures such as what happens in traditional VAV systems.

Figure 29: Original Vs. Chilled beams Gas Usage

Figure 30 yields the electricity usage breakdown by equipment. Since this building is part load and part office there are high receptacle loads compromising most of the cost. The next highest usage of electricity is the fans, which shows why it is so effective in terms of energy usage to improve the fan efficiency and lower the power needed to supply the fans.

Figure 30: Chilled Beams Electricity Usage Breakdown

Cost Analysis

A study was conducted on the cost of the first cost of the chilled beams, the payback period, and the lifecycle cost for the instillation of the chilled beams system, and can be found below.

First Cost

Using the chilled beam schedule in Appendix H the total cost of the chilled beams could be calculated. The total linear feet of the beams added was multiplied by 130\$/LF for chilled beams. Next the cost of the VAV boxes and diffusers were calculated. Next the VAV boxes were resized based on the new supply air CFM.

For piping a general layout was prepared for the 6th floor and then extrapolated for each other floor due to similar floor layouts. Lastly the downsizing of the exhaust air handing units by adding up all the chilled beams, piping, AHU removal, and VAV resizing the total chilled beams cost was found. This was then subtracted by the original VAV box cost and diffuser cost to find the cost difference between the two systems. This equated out to an additional cost of \$743167.79 for the chilled beams system. A breakdown of the cost can be found in table 41. A more detailed breakdown may be found in APPENDIX H.

Table 41: Chilled Beam Cost Analysis

Unit	Cost
Chilled Beams & Resized VAV Box's Total	\$962,824.69
VAV BOX & Diffusers	\$(417,784.28)
Piping	\$822,942.38
AHU Removal	\$(640,815.00)
CHW PUMP	\$16,000.00
Total Cost	\$743,167.79

Life Cycle Cost

Using the additional chilled beam cost found above payback period compared to at VAV reheat system could be found. With the total savings of \$532,217.29 per year the payback period took just over a year (1.4 year payback). A breakdown of this can be found in table 42. Table 42 also shows the savings compared to the original VAV system after 10 years and the additional savings after 10 years can be found to be \$4,579,008.38.

Table 42: Chilled Beams 10 Year Cost Analysis

	10 Year Life Cycle Cost Analysis					
YEAR	Original System VAV Reheat	Chilled Beams Alternate				
0	\$0	\$743,167.79				
1	\$2,178,044.38	\$2,388,994.56				
2	\$4,356,088.77	\$4,034,821.32				
3	\$6,534,133.15	\$5,680,648.09				
4	\$8,712,177.53	\$7,326,474.86				
5	\$10,890,221.92	\$8,972,301.62				
6	\$13,068,266.30	\$10,618,128.39				
7	\$15,246,310.68	\$12,263,955.15				
8	\$17,424,355.06	\$13,909,781.92				
9	\$19,602,399.45	\$15,555,608.69				
10	\$21,780,443.83	\$17,201,435.45				

Emissions Reduction

Nathaniel J. Mooney | Mechanical | Dr. William Bahnfleth | Final Report | 04/03/13 | 82

Due to the reduction in energy usage the negative effects from the production of that energy will be reduced as well. Using Trane Trace 700 the environmental impact of three main pollutants was studied. The three pollutants studied were CO2, SO2, and NOX. As seen in Table 43, the impact on the environment from adding the chilled beams was greatly reduced. It should be noted that this study does not take into account the impact of creating the equipment for the new systems. The building emissions for all three pollutants were reduced by 22%. CO2 output was most drastically changed by 191,112,128 lbm/yr.

Table 43: Environmental Impact of Chilled Beams

	ENVIRONMENTAL IMPACT						
Pollutant	Unit	Original System VAV Reheat	Chilled Beams Alternate	% Change Difference			
CO2	lbm/yr	876,396,480	685,284,352	-21.81%	191,112,128		
SO2	gm/yr	2,742,078	2,144,125	-21.81%	597,953		
NOX	gm/yr	742,165	580,324	-21.81%	161,841		

Summary

75 Ames Street is a perfect candidate for a chilled beams system for day 1 use. Chilled beams can be used in labs and offices to lower the airflow needed to cool or heat a space. In 75 Ames case there is great savings involved and a very acceptable payback period. Not only are the economics favorable but there is also the large incentive to install this system because of the large environmental impact savings.

Depth III: Chilled Beams & Aircuity's Demand Controlled Ventilation

Objectives

By combining the chilled beam system with the Arcuity Optinet system even lower energy rates may be obtained. Chilled beams in the labs must still supply enough air for ventilation for the space. This leaves the system with even more room to turn down the airflow rates by using a demand controlled ventilation system.

Design Considerations

The design considerations are the same for both the chilled beams from Depth II and the Aircuity Optinet demand controlled ventilation system in Depth I. By following the designs outlined in each depth an analysis can be performed on the two systems working together. The table below shows the inputs put into TRANE TRACE 700 to calculate the Energy usage of this new design.

Table 44: Trace 700 Inputs DCV & Aircuity

TRANE TRACE 700 : 75 Ames Inputs						
Location/Weather	Boston, Massachusetts					
	VAV Sy:	stem w	vith reh	eat (30% N	lin Flow)	
System	Active Chille	ed Bea	ms (48	BTU/ (CFM	Primary Air)	
Room Set Points			Winte	er (°F)	Summer (°F)	
	Temperature			72	<i>75</i>	
	Humidity		25	5% (±5)	50% (±5)	
Internal Loads				ghting atts/SF)	Equipment (Watts/SF)	
	Office			1.2	2	
	Labs			2	10	
	Tissue Culture	e:	2		20	
Airside Components			Outside Air System			
	Duct Supply a Temp Max (°F		55			
	Duct Supply a Min (°F)	iir	52			
	Humidity rati difference (gr		0.0012			
Waterside		EW	Г (°F)	LWT (°F)	ΔT (°F)	
Components	Chiller	5	6	42	14	
	Evaporator 9		95	85	10	
Schedules	During unoccupied times ventilation rates are lowered See Appendix G					
Ventilation Rates	Labs 6 to 12 ACH			TH .		
	Labs DCV			2 to 4 ACI	Η	
	Office		20	CFM Per P	erson	

Energy Usage Estimates

Nathaniel J. Mooney | Mechanical | Dr. William Bahnfleth | Final Report | 04/03/13 | 84

Using Trane Trace 700 and the variables described above the following energy consumption was found.

Table 45: DCV & Chilled Beams Energy Usage

	Electricity (kWh)	Natural Gas (Therms)	Electricity Cost Per year	Natural Gas Cost per year	Total Cost Per Year
Original System	9,985,524.00	107,047.00	\$2,007,090.32	\$170,954.06	\$2,178,044.38
Chilled Beams + DCV	7,493,006.00	42,136.00	\$1,506,094.21	\$67,291.19	\$1,573,385.40
Difference	ence 2,492,518.00		64,911.00 \$500,996.12		\$604,658.99
				% change	-28%

Table 45 shows the increase percent change of the total energy cost per year of the combinations of the two systems vs. the original VAV reheat system. The chilled beams, which changed the energy use by 24 % and the Aircuity system that changed it by 9 %, were able to decrease the total energy by 28 % when combined. This means that annually \$604,658.99 is saved.

First Cost

The first cost of this system is just the sum of the first costs from Depth 1 and Depth 2. There is no other equipment necessary to make this work. The equipment cannot be downsized further than it was in the chilled beams because the Aircuity system must be able to meet the system purge conditions where labs may need high air change rates to get rid of chemical contaminants in a room.

Lifecycle

Below table 46 shows the 10 year savings and a payback of 1.5 years. The first cost is \$743,167.79 for the chilled beams and \$160,000.00 for the Aircuity system, totaling \$903,167.79. Since the system saves \$604,658.99 a year compared to the original system it does not take long to pay itself off. The Aircuity system also has the option of yearly maintenance for \$20963, which is waived the first year. For just the Aircuity system with no maintenance the total savings after 10 years is \$5,143,421.23. If the maintenance is chosen the 10-year savings is \$4,954,754.23.

Table 46: DCV & Chilled Beams 10 Year Lifecycle & Payback

YEAR Original System VAV Reheat DCV + Chilled Beams Alternate With Maintenance First Year Free	10 Year Life Cycle Cost Analysis									
	YEAR		Beams							

Nathaniel J. Mooney

Mechanical

Dr. William Bahnfleth

Final Report

04/03/13

0	\$0	\$903,167.79	\$903,167.79
1	\$2,178,044.38	\$2,476,553.19	\$2,476,553.19
2	\$4,356,088.77	\$4,049,938.59	\$4,070,901.59
3	\$6,534,133.15	\$5,623,323.98	\$5,665,249.98
4	\$8,712,177.53	\$7,196,709.38	\$7,259,598.38
5	\$10,890,221.92	\$8,770,094.78	\$8,853,946.78
6	\$13,068,266.30	\$10,343,480.18	\$10,448,295.18
7	\$15,246,310.68	\$11,916,865.58	\$12,042,643.58
8	\$17,424,355.06	\$13,490,250.97	\$13,636,991.97
9	\$19,602,399.45	\$15,063,636.37	\$15,231,340.37
10	\$21,780,443.83	\$16,637,021.77	\$16,825,688.77

Emissions

By placing the two systems together 75 Ames Street was able to gain even greater energy savings, up to a 25% change in emissions. 218,760,064. That is equivalent to the emissions of 19,200 cars per year. The entire emissions breakdown can be found in table 47 below.

Table 47: DCV & Chilled Beams Environmental Impact

ENVIRONMENTAL IMPACT										
Pollutant	Unit	Original System VAV Reheat	DCV & Chilled Beams Alternate	% Change	Difference					
CO2	lbm/yr	876,396,480	657,636,416	-24.96%	218,760,064					
SO2	gm/yr	2,742,078	2,057,619	-24.96%	684,459					
NOX	gm/yr	742,165	556,911	-24.96%	185,254					

Summary

Combining both systems amounts to the greatest savings. These two systems tend to complement each other, the chilled beams act to remove a bulk of the fan power needed in labs and offices, then the Aircuity lets the labs supply air be turned down even lower. Using this system with the yearly maintenance would be the best choice of the three depths discussed. The maintenance is import to ensure the system is reading properly and monitoring the rooms to ensure safety to the occupants.

Breadth I: Electrical/Lighting

Introduction

Nathaniel J. Mooney | Mechanical | Dr. William Bahnfleth | Final Report | 04/03/13

75 Ames's transition from a VAV system to a chilled beam system resulted in changes to equipment sizing. This size change will result in changes to the power distribution, which will be discussed below. There was also a change to the room layout due to chilled beams being longer than just a normal diffuser. The changes to the ceiling plan and effect on lighting for the offices shall also be analyzed.

Design: Electrical

Using fan affinity laws the new fan horse power could be found. Using Table 430.250 Full Load Current Three-Phase Alternating-Current Motors from the NEC 2011 for the fans and pumps the full load current was found. From this it was possible to calculate the volt-amps for each motor using the following formula...

$$FLA=KVA / (Voltage \sqrt{3}) \rightarrow KVA = (Voltage)(\sqrt{3})(FLA)$$

Using the full load amps with a 1.25 multiplier for continuous loads the wire is able to be sized using Table 310.15(B)(16) from the NEC 2011 for a THWN type wire rated for 75°C. The next step is to size the short circuit protection. From Table 430.52 in the NEC 2011 and using a 2.5 multiplier on the FLC the circuit breaker amps are found. In this assessment the next lowest breaker size was chosen. For example if the amps are found to be 160 a 150-amp circuit breaker would be chosen. Now that both the circuit breaker and wires are chosen a ground wire needs to be sized based on the circuit breaker size using table 250.122 from the NEC 2011. The conduit size is chosen by using Table C.1 in the NEC 2011 for electromagnetic tubing (EMT). Lastly the starter size and local disconnect must be sized. The starter is based off of a chart of NEMA Starter Sizes and local disconnects come in standard sizes of 30, 60, 100, and 200 amps so the next higher disconnect is chosen based on the FLC.

Below Table 48 shows the sizes selected for the new and old equipment installed in 75 Ames Street.

								Existing	,						
UNIT	UNIT#	Volt	Phase	Fan HP	FLA	kVA	Wire	Wire amps		Starter	Load Amp	CB Size	Gnd Size	Disc. A	Panel Board
	SF1	480	3	75	96	80	4 - #1	120	1-1/4"	NEMA SIZE 4	240	225	4	100	E4M31
	SF2	480	3	75	96	80	4 - #1	120	1-1/4"	NEMA SIZE 4	240	225	4	100	E4M32
AHU1	SF3	480	3	75	96	80	4 - #1	120	1-1/4"	NEMA SIZE 4	240	225	4	100	DP4M21
	SF4	480	3	75	96	80	4 - #1	120	1-1/4"	NEMA SIZE 4	240	225	4	100	DP4M21
	SF1	480	3	75	96	80	4 - #1	120	1-1/4"	NEMA SIZE 4	240	225	4	100	E4M32
AHU2	SF2	480	3	75	96	80	4 - #1	120	1-1/4"	NEMA SIZE 4	240	225	4	100	E4M32
AIIUZ	SF3	480	3	75	96	80	4 - #1	120	1-1/4"	NEMA SIZE 4	240	225	4	100	DP4M31
	SF4	480	3	75	96	80	4 - #1	120	1-1/4"	NEMA SIZE 4	240	225	4	100	DP4M31
	SF1	480	3	75	96	80	4 - #1	120	1-1/4"	NEMA SIZE 4	240	225	4	100	E4M32
AHU3	SF2	480	3	75	96	80	4 - #1	120	1-1/4"	NEMA SIZE 4	240	225	4	100	E4M31
	SF3	480	3	75	96	80	4 - #1	120	1-1/4"	NEMA SIZE 4	240	225	4	100	SWB-4M2
	SF4	480	3	75	96	80	4 - #1	120	1-1/4"	NEMA SIZE 4	240	225	4	100	SWB-4M2
	SF1	480	3	75	96	80	4 - #1	120	1-1/4"	NEMA SIZE 4	240	225	4	100	E4M32
AHU4	SF2	480	3	75	96	80	4 - #1	120	1-1/4"	NEMA SIZE 4	240	225	4	100	E4M32
	SF3 SF4	480 480	3	75 75	96 96	80	4 - #1 4 - #1	120 120	1-1/4" 1-1/4"	NEMA SIZE 4 NEMA SIZE 4	240 240	225 225	4	100	SWB-4M3 SWB-4M3
	SF1	480	3	50	65	54	4 - #1	81.25	1"	NEMA SIZE 3	162.5	150	6	100	EDP4M31
	SF2	480	3	50	65	54	4 - #4	81.25	1"	NEMA SIZE 3	162.5	150	6	100	EDP4M31
AHU5	SF3	480	3	50	65	54	4 - #4	81.25	1"	NEMA SIZE 3	162.5	150	6	100	EDP4M31
	SF4	480	3	50	65	54	4 - #4	81.25	1"	NEMA SIZE 3	162.5	150	6	100	EDP4M31
	EF1	480	3	100	124	103	4 - #2/0	155	2"	NEMA SIZE 4	310	300	3	200	E4M32
	EF2	480	3	100	124	103	4 - #2/0	155	2"	NEMA SIZE 4	310	300	3	200	E4M31
EAHU1	EF3	480	3	100	124	103	4 - #2/0	155	2"	NEMA SIZE 4	310	300	3	200	SWB-4M3
	EF4	480	3	100	124	103	4 - #2/0	155	2"	NEMA SIZE 4	310	300	3	200	SWB-4M3
	EF5	480	3	100	124	103	4 - #2/0	155	2"	NEMA SIZE 4	310	300	3	200	SWB-4M3
	EF1	480	3	100	124	103	4 - #2/0	155	2"	NEMA SIZE 4	310	300	3	200	E4M32
	EF2	480	3	100	124	103	4 - #2/0	155	2"	NEMA SIZE 4	310	300	3	200	E4M32
EAHU2	EF3	480	3	100	124	103	4 - #2/0	155	2"	NEMA SIZE 4	310	300	3	200	SWB-4M2
	EF4	480	3	100	124	103	4 - #2/0	155	2"	NEMA SIZE 4	310	300	3	200	SWB-4M2
	EF5	480	3	100	124	103	4 - #2/0	155	2"	NEMA SIZE 4	310	300	3	200	SWB-4M2
	EF1	480	3	50	65	54	4 - #4	81.25	1"	NEMA SIZE 3	162.5	150	6	100	E4M33
EAHU3	EF2	480	3	50	65	54	4 - #4	81.25	1"	NEMA SIZE 3	162.5	150	6	100	E4M33
	EF3	480	3	50	65	54	4 - #4	81.25	1"	NEMA SIZE 3	162.5	150	6	100	E4M33
Redesign	1									NEMA SIZE 3		150			E4M33
UNIT	UNIT#	Volt	Phase	Fan HP	FLA	kVA	Wire	Wire amps	Conduit	NEMA SIZE 3 Starter	Load Amp	150 CB Size	Gnd Size	Disc. A	E4M33 Panel Board
	UNIT#	Volt 480	Phase 3	Fan HP	FLA 113	kVA 94	Wire 4 - #1/0	Wire amps	Conduit 1-1/2"	Starter NEMA SIZE 4	Load Amp 282.5	150 CB Size 250	Gnd Size	Disc. A	E4M33 Panel Board E4M31
UNIT	UNIT# SF1 SF2	Volt 480 480	Phase 3	Fan HP 90 90	FLA 113 113	kVA 94 94	Wire 4 - #1/0 4 - #1/0	Wire amps 141.25 141.25	Conduit 1-1/2" 1-1/2"	Starter NEMA SIZE 4 NEMA SIZE 4	Load Amp 282.5 282.5	150 CB Size 250 250	Gnd Size	Disc. A 200 200	Panel Board E4M31 E4M32
UNIT	UNIT# SF1 SF2 SF3	Volt 480 480 480	Phase 3 3	90 90 90	FLA 113 113 113	kVA 94 94 94	Wire 4 - #1/0 4 - #1/0 4 - #1/0	Wire amps 141.25 141.25 141.25	Conduit 1-1/2" 1-1/2" 1-1/2"	Starter NEMA SIZE 4 NEMA SIZE 4 NEMA SIZE 4	Load Amp 282.5 282.5 282.5	150 CB Size 250 250 250	Gnd Size 4 4 4	Disc. A 200 200 200	Panel Board E4M31 E4M32 DP4M21
UNIT AHU1	UNIT# SF1 SF2 SF3 SF4	Volt 480 480 480 480	Phase 3 3 3 3 3	90 90 90 90	FLA 113 113 113 113	kVA 94 94 94 94	Wire 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0	Wire amps 141.25 141.25 141.25 141.25	Conduit 1-1/2" 1-1/2" 1-1/2" 1-1/2"	Starter NEMA SIZE 4	Load Amp 282.5 282.5 282.5 282.5	250 250 250 250	4 4 4 4	Disc. A 200 200 200 200 200	Panel Board E4M31 E4M32 DP4M21 DP4M21
UNIT	UNIT # SF1 SF2 SF3 SF4 SF1	Volt 480 480 480 480 480	Phase 3 3 3 3 3 3	90 90 90 90 90	FLA 113 113 113 113 113	kVA 94 94 94 94 94	Wire 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0	Wire amps 141.25 141.25 141.25 141.25 141.25	Conduit 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2"	Starter NEMA SIZE 4	Load Amp 282.5 282.5 282.5 282.5 282.5	250 250 250 250 250 250	4 4 4 4 4 4	Disc. A 200 200 200 200 200 200	Panel Board E4M31 E4M32 DP4M21 DP4M21 E4M32
UNIT AHU1	UNIT # SF1 SF2 SF3 SF4 SF1 SF2	Volt 480 480 480 480 480 480	Phase 3 3 3 3 3 3 3 3	90 90 90 90 90 90	FLA 113 113 113 113 113 113	94 94 94 94 94 94	Wire 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0	Wire amps 141.25 141.25 141.25 141.25 141.25 141.25	Conduit 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2"	Starter NEMA SIZE 4	Load Amp 282.5 282.5 282.5 282.5 282.5 282.5 282.5	250 250 250 250 250 250 250	Gnd Size 4 4 4 4 4 4 4	Disc. A 200 200 200 200 200 200 200 200	Panel Board E4M31 E4M32 DP4M21 DP4M21 E4M32 E4M32
UNIT AHU1	UNIT # SF1 SF2 SF3 SF4 SF1	Volt 480 480 480 480 480	Phase 3 3 3 3 3 3	90 90 90 90 90	FLA 113 113 113 113 113	kVA 94 94 94 94 94	Wire 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0	Wire amps 141.25 141.25 141.25 141.25 141.25	Conduit 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2"	Starter NEMA SIZE 4	Load Amp 282.5 282.5 282.5 282.5 282.5	250 250 250 250 250 250	4 4 4 4 4 4	Disc. A 200 200 200 200 200 200	Panel Board E4M31 E4M32 DP4M21 DP4M21 E4M32
UNIT AHU1	UNIT # SF1 SF2 SF3 SF4 SF1 SF2 SF3	Volt 480 480 480 480 480 480 480 48	Phase 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	90 90 90 90 90 90 90 90	FLA 113 113 113 113 113 113 113	8VA 94 94 94 94 94 94 94	Wire 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0	Wire amps 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25	Conduit 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2"	Starter NEMA SIZE 4	Load Amp 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5	250 250 250 250 250 250 250 250 250	4 4 4 4 4 4 4 4	Disc. A 200 200 200 200 200 200 200 200 200	Panel Board E4M31 E4M32 DP4M21 DP4M21 E4M32 E4M32 DP4M31
UNIT AHU1 AHU2	UNIT # SF1 SF2 SF3 SF4 SF1 SF2 SF3 SF4 SF1 SF2 SF3 SF4 SF1 SF5	Volt 480 480 480 480 480 480 480 480 480 480	Phase 3 3 3 3 3 3 3 3 3 3 3	90 90 90 90 90 90 90 90 90 90	FLA 113 113 113 113 113 113 113 113 113 11	8VA 94 94 94 94 94 94 94 94 94 94 94	Wire 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0	Wire amps 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25	Conduit 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2"	Starter NEMA SIZE 4	Load Amp 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5	250 250 250 250 250 250 250 250 250 250	Gnd Size 4 4 4 4 4 4 4 4 4 4	Disc. A 200 200 200 200 200 200 200 200 200 20	Panel Board E4M31 E4M32 DP4M21 DP4M21 E4M32 E4M32 E4M32 DP4M31 DP4M31 E4M32 E4M32
UNIT AHU1 AHU2	UNIT # SF1 SF2 SF3 SF4 SF1 SF2 SF3 SF4 SF1 SF2 SF3 SF4 SF1	Volt 480 480 480 480 480 480 480 480 480 480	Phase 3 3 3 3 3 3 3 3 3 3 3 3 3	90 90 90 90 90 90 90 90 90	FLA 113 113 113 113 113 113 113 113 113 11	8VA 94 94 94 94 94 94 94 94 94	Wire 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0	Wire amps 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25	Conduit 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2"	Starter NEMA SIZE 4	282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5	250 250 250 250 250 250 250 250 250 250	Gnd Size 4 4 4 4 4 4 4 4 4 4 4	Disc. A 200 200 200 200 200 200 200 200 200 20	Panel Board E4M31 E4M32 DP4M21 DP4M21 E4M32 E4M32 DP4M31 DP4M31 E4M32
AHU2	UNIT # SF1 SF2 SF3 SF4 SF1 SF2 SF3 SF4 SF1 SF2 SF3 SF4 SF1 SF5	Volt 480 480 480 480 480 480 480 480 480 480	Phase 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	90 90 90 90 90 90 90 90 90 90	FLA 113 113 113 113 113 113 113 113 113 11	8VA 94 94 94 94 94 94 94 94 94 94 94	Wire 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0	Wire amps 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25	Conduit 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2"	Starter NEMA SIZE 4	Load Amp 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5	250 250 250 250 250 250 250 250 250 250	Gnd Size 4 4 4 4 4 4 4 4 4 4 4	Disc. A 200 200 200 200 200 200 200 200 200 20	Panel Board E4M31 E4M32 DP4M21 DP4M21 E4M32 E4M32 E4M32 DP4M31 DP4M31 E4M32 E4M32
UNIT AHU1 AHU2	UNIT # SF1 SF2 SF3 SF4 SF1 SF2 SF3 SF4 SF1 SF2 SF3 SF4 SF1 SF2 SF3 SF4 SF1	Volt 480 480 480 480 480 480 480 48	Phase 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Fan HP 90 90 90 90 90 90 90 90 90 90 90 90 90	FLA 113 113 113 113 113 113 113 113 113 11	8VA 94 94 94 94 94 94 94 94 94 94 94 94 94	Wire 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0	Wire amps 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25	Conduit 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2"	Starter NEMA SIZE 4	Load Amp 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5	250 250 250 250 250 250 250 250 250 250	Gnd Size 4 4 4 4 4 4 4 4 4 6	Disc. A 200 200 200 200 200 200 200 200 200 20	Panel Board E4M31 E4M32 DP4M21 DP4M21 E4M32 E4M32 E4M32 E4M31 DP4M31 E4M32 E4M31 SWB-4M2 SWB-4M2 EDP4M31
AHU2	UNIT # SF1 SF2 SF3 SF4 SF1 SF2 SF3 SF4 SF1 SF2 SF3 SF4 SF1 SF2 SF3 SF4 SF1 SF2 SF3	Volt 480 480 480 480 480 480 480 480 480 480	Phase 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Fan HP 90 90 90 90 90 90 90 90 90 90 90 90 90	FLA 113 113 113 113 113 113 113 113 113 11	8VA 94 94 94 94 94 94 94 94 94 94 94 94 94	Wire 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0	Wire amps 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25	Conduit 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2"	Starter NEMA SIZE 4	Load Amp 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5	250 250 250 250 250 250 250 250 250 250	Gnd Size 4 4 4 4 4 4 4 4 4 6 6	Disc. A 200 200 200 200 200 200 200 200 200 20	Panel Board E4M31 E4M32 DP4M21 DP4M21 E4M32 E4M32 DP4M31 DP4M31 DP4M31 SWB-4M2 SWB-4M2 EDP4M31 EDP4M31 EDP4M31
AHU2	UNIT # SF1 SF2 SF3 SF4 SF1 SF2 SF3 SF4 SF1 SF2 SF3 SF4 SF1 SF2 SF3 SF4 SF1 SF2 SF3	Volt 480 480 480 480 480 480 480 48	Phase 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Fan HP 90 90 90 90 90 90 90 90 90 90 90 90 50 50	FLA 113 113 113 113 113 113 113 113 113 11	8VA 94 94 94 94 94 94 94 94 94 94 94 94 94	Wire 4 - #1/0	Wire amps 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25	Conduit 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2"	Starter NEMA SIZE 4 NEMA SIZE 3 NEMA SIZE 3	Load Amp 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 162.5	250 250 250 250 250 250 250 250 250 250	Gnd Size 4 4 4 4 4 4 4 4 4 6 6 6	Disc. A 200 200 200 200 200 200 200 200 200 20	Panel Board E4M31 E4M32 DP4M21 DP4M21 E4M32 E4M32 E4M32 DP4M31 DP4M31 DP4M31 SWB-4M2 SWB-4M2 EDP4M31 EDP4M31 EDP4M31
AHU2 AHU3	UNIT # SF1 SF2 SF3 SF4	Volt 480 480 480 480 480 480 480 48	Phase 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Fan HP 90 90 90 90 90 90 90 90 90 90 90 90 50 50 50	FLA 113 113 113 113 113 113 113 113 113 11	8VA 94 94 94 94 94 94 94 94 94 94 95 95 95 96 96 97 98 98 98 98 98 98 98 98 98 98 98 98 98	Wire 4 - #1/0	Wire amps 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 81.25 81.25 81.25 81.25	Conduit 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1" 1" 1"	Starter NEMA SIZE 4 NEMA SIZE 3 NEMA SIZE 3	Load Amp 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 162.5 162.5 162.5	250 250 250 250 250 250 250 250 250 250	Gnd Size 4 4 4 4 4 4 4 4 4 6 6 6	Disc. A 200 200 200 200 200 200 200 200 200 20	Panel Board E4M31 E4M32 DP4M21 DP4M21 E4M32 E4M32 E4M32 DP4M31 DP4M31 DP4M31 SWB-4M2 SWB-4M2 EDP4M31 EDP4M31 EDP4M31
AHU2	UNIT # SF1 SF2 SF3 SF4 SF1 SF2 SF3	Volt 480 480 480 480 480 480 480 48	Phase 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Fan HP 90 90 90 90 90 90 90 90 90 90 90 90 50 50 50	FLA 113 113 113 113 113 113 113 113 113 11	8VA 94 94 94 94 94 94 94 94 94 94 95 95 96 97 98 98 98 98 98 98 98 98 98 98 98 98 98	Wire 4 - #1/0	Wire amps 141.25	Conduit 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1" 1" 1" 1"	Starter NEMA SIZE 4 NEMA SIZE 3 NEMA SIZE 3 NEMA SIZE 3 NEMA SIZE 3	Load Amp 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 162.5 162.5 162.5 162.5	250 250 250 250 250 250 250 250 250 250	Gnd Size 4 4 4 4 4 4 4 4 6 6 6 6	Disc. A 200 200 200 200 200 200 200 200 200 20	Panel Board E4M31 E4M32 DP4M21 DP4M21 DP4M21 E4M32 E4M32 DP4M31 DP4M31 E4M32 E4M31 SWB-4M2 SWB-4M2 SWB-4M2 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31
AHU2 AHU3	UNIT # SF1 SF2 SF3 SF4 SF4 SF1 SF2 SF3	Volt 480 480 480 480 480 480 480 48	Phase 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Fan HP 90 90 90 90 90 90 90 90 90 90 90 90 50 50 50	FLA 113 113 113 113 113 113 113 113 113 11	8VA 94 94 94 94 94 94 94 94 94 94 95 95 96 97 98 98 98 98 98 98 98 98 98 98 98 98 98	Wire 4 - #1/0	Wire amps 141.25	Conduit 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1" 1" 1" 1" 1"	Starter NEMA SIZE 4 NEMA SIZE 3	Load Amp 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 162.5 162.5 162.5 162.5	250 250 250 250 250 250 250 250 250 250	Gnd Size 4 4 4 4 4 4 4 4 6 6 6 6 6	Disc. A 200 200 200 200 200 200 200 200 200 20	Panel Board E4M31 E4M32 DP4M21 DP4M21 E4M32 E4M32 DP4M31 DP4M31 E4M32 E4M31 SWB-4M2 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31
AHU2 AHU3	UNIT # SF1 SF2 SF3 SF4 SF7 SF2 SF3 SF4	Volt 480 480 480 480 480 480 480 48	Phase 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Fan HP 90 90 90 90 90 90 90 90 90 90 90 90 50 50 50 50	FLA 113 113 113 113 113 113 113 113 113 11	8VA 94 94 94 94 94 94 94 94 94 94 95 95 96 97 98 98 98 98 98 98 98 98 98 98 98 98 98	Wire 4 - #1/0	Wire amps 141.25	Conduit 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1" 1" 1" 1" 1" 1"	Starter NEMA SIZE 4 NEMA SIZE 3	Load Amp 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 162.5 162.5 162.5 162.5 162.5 162.5	250 250 250 250 250 250 250 250 250 250	Gnd Size 4 4 4 4 4 4 4 4 6 6 6 6 6	Disc. A 200 200 200 200 200 200 200 200 200 20	Panel Board E4M31 E4M32 DP4M21 DP4M21 E4M32 DP4M31 E4M32 DP4M31 E4M32 E4M31 SWB-4M2 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31 ESP4M31 SWB-4M2 ESP4M31 ESP4M31 ESP4M31 ESP4M31 ESP4M31
AHU2 AHU3	UNIT # SF1 SF2 SF3 SF4 SF4 SF7 SF4 SF7 SF7 SF8 SF8 SF8 SF8 SF8 SF8	Volt 480 480 480 480 480 480 480 48	Phase 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Fan HP 90 90 90 90 90 90 90 90 90 90 90 90 50 50 50 50 50	FLA 113 113 113 113 113 113 113 113 113 11	8VA 94 94 94 94 94 94 94 94 94 94 95 95 96 97 98 98 98 98 98 98 98 98 98 98 98 98 98	Wire 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #4/0 4 - #4 4 - #4 4 - #4 4 - #4 4 - #4 4 - #4 4 - #4 4 - #4	Wire amps 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25	Conduit 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1" 1" 1" 1" 1" 1" 1" 1"	Starter NEMA SIZE 4 NEMA SIZE 3	Load Amp 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 162.5 162.5 162.5 162.5 162.5 162.5	250 250 250 250 250 250 250 250 250 250	Gnd Size 4 4 4 4 4 4 4 4 6 6 6 6 6	Disc. A 200 200 200 200 200 200 200 200 200 20	Panel Board E4M31 E4M32 DP4M21 DP4M21 E4M32 E4M32 DP4M31 DP4M31 E4M32 E4M31 SWB-4M2 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31 SWB-4M2 SWB-4M2 SWB-4M3 SWB-4M3
AHU2 AHU3 AHU5	UNIT # SF1 SF2 SF3 SF4 SF5 SF4 SF5 SF5 SF6 SF7 SF7 SF7 SF8 SF8 SF8 SF8 SF8	Volt 480 480 480 480 480 480 480 48	Phase 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Fan HP 90 90 90 90 90 90 90 90 90 90 90 90 50 50 50 50 50	FLA 113 113 113 113 113 113 113 113 113 11	8VA 94 94 94 94 94 94 94 94 94 94 95 95 96 97 98 98 98 98 98 98 98 98 98 98 98 98 98	Wire 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #4/ 4 - #4 4 - #4 4 - #4 4 - #4 4 - #4 4 - #4 4 - #4 4 - #4 4 - #4 4 - #4 4 - #4	Wire amps 141.25	Conduit 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1"	Starter NEMA SIZE 4 NEMA SIZE 3	Load Amp 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5	250 250 250 250 250 250 250 250 250 250	Gnd Size 4 4 4 4 4 4 4 4 6 6 6 6 6	Disc. A 200 200 200 200 200 200 200 200 200 20	Panel Board E4M31 E4M32 DP4M21 DP4M21 E4M32 E4M32 DP4M31 DP4M31 E4M32 E4M31 SWB-4M2 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EWB-4M3 EWB-4M3 SWB-4M3 SWB-4M3 SWB-4M3
AHU2 AHU3	UNIT # SF1 SF2 SF3 SF4 SF5 SF4 SF5 SF6 SF7 SF7 SF8 SF8 SF8 SF9 SF9 SF9 SF9 SF9	Volt 480 480 480 480 480 480 480 48	Phase 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Fan HP 90 90 90 90 90 90 90 90 90 90 90 90 50 50 50 50 50 50	FLA 113 113 113 113 113 113 113 113 113 11	8VA 94 94 94 94 94 94 94 94 94 94 95 95 96 97 98 98 98 98 98 98 98 98 98 98 98 98 98	Wire 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #1/0 4 - #4/0 4 - #4 4 - #4 4 - #4 4 - #4 4 - #4 4 - #4 4 - #4 4 - #4 4 - #4 4 - #4 4 - #4 4 - #4	Wire amps 141.25	Conduit 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1"	Starter NEMA SIZE 4 NEMA SIZE 3	Load Amp 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5	250 250 250 250 250 250 250 250 250 250	Gnd Size 4 4 4 4 4 4 4 4 6 6 6 6 6	Disc. A 200 200 200 200 200 200 200 200 200 20	Panel Board E4M31 E4M32 DP4M21 DP4M21 E4M32 E4M32 DP4M31 DP4M31 E4M32 E4M31 SWB-4M2 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EVP4M31 EVVB-4M33 EVWB-4M3 EVWB-4M3
AHU2 AHU3 AHU5	UNIT # SF1 SF2 SF3 SF4 EF1 EF2 EF3 EF4 EF5 EF1	Volt 480 480 480 480 480 480 480 48	Phase 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Fan HP 90 90 90 90 90 90 90 90 90 90 90 90 50 50 50 50 50 50 50 50	FLA 113 113 113 113 113 113 113 113 113 11	8VA 94 94 94 94 94 94 94 94 94 94 95 95 96 97 98 98 98 98 98 98 98 98 98 98 98 98 98	Wire 4 - #1/0	Wire amps 141.25	Conduit 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1"	Starter NEMA SIZE 4 NEMA SIZE 3	Load Amp 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5	250 250 250 250 250 250 250 250 250 250	Gnd Size 4 4 4 4 4 4 4 4 6 6 6 6 6	Disc. A 200 200 200 200 200 200 200 200 200 20	Panel Board E4M31 E4M32 DP4M21 DP4M21 E4M32 E4M32 DP4M31 E4M32 E4M31 SWB-4M2 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EXWB-4M3
AHU2 AHU3 AHU5	UNIT # SF1 SF2 SF3 SF4 EF1 EF2 EF3 EF5 EF1 EF5 EF5	Volt 480 480 480 480 480 480 480 48	Phase 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Fan HP 90 90 90 90 90 90 90 90 90 90 90 90 50 50 50 50 50 50 50 50	FLA 113 113 113 113 113 113 113 113 113 11	8VA 94 94 94 94 94 94 94 94 94 94 95 96 97 98 98 98 98 98 98 98 98 98 98 98 98 98	Wire 4 - #1/0	Wire amps 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 141.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25	Conduit 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1"	Starter NEMA SIZE 4 NEMA SIZE 3	Load Amp 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5	250 250 250 250 250 250 250 250 250 250	Gnd Size 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6	Disc. A 200 200 200 200 200 200 200 200 200 20	E4M33 Panel Board E4M31 E4M32 DP4M21 DP4M21 DP4M21 E4M32 E4M32 DP4M31 E4M32 E4M31 SWB-4M2 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EWB-4M3 EWB-4M3 EWB-4M3 EWB-4M3 SWB-4M3 SWB-4M3 SWB-4M3 E4M32 E4M32 SWB-4M3
AHU2 AHU3 AHU5	UNIT # SF1 SF2 SF3 SF4 EF1 EF2 EF3 EF4 EF5 EF1	Volt 480 480 480 480 480 480 480 48	Phase 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Fan HP 90 90 90 90 90 90 90 90 90 90 90 90 50 50 50 50 50 50 50 50	FLA 113 113 113 113 113 113 113 113 113 11	8VA 94 94 94 94 94 94 94 94 94 94 94 95 95 96 97 98 98 98 98 98 98 98 98 98 98 98 98 98	Wire 4 - #1/0	Wire amps 141.25	Conduit 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1"	Starter NEMA SIZE 4 NEMA SIZE 3	Load Amp 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5	250 250 250 250 250 250 250 250 250 250	Gnd Size 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6	Disc. A 200 200 200 200 200 200 200 200 200 20	E4M33 Panel Board E4M31 E4M32 DP4M21 DP4M21 DP4M31 E4M32 E4M32 DP4M31 SWB-4M2 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EWB-4M2 EWB-4M3
AHU2 AHU3 AHU5 EAHU1	UNIT # SF1 SF2 SF3 SF4 SF1 SF2 SF3 SF4 SF1 SF2 SF3 SF4 SF1 SF2 SF3 SF4 EF1 EF2 EF3 EF4 EF5 EF1 EF2 EF3 EF4 EF5	Volt 480 480 480 480 480 480 480 48	Phase 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Fan HP 90 90 90 90 90 90 90 90 90 90 90 90 90	FLA 113 113 113 113 113 113 113 113 113 11	8VA 94 94 94 94 94 94 94 94 94 94 95 96 97 98 98 98 98 98 98 98 98 98 98 98 98 98	Wire 4 - #1/0	Wire amps 141.25	Conduit 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1"	NEMA SIZE 3 NEMA SIZE 4 NEMA SIZE 3	Load Amp 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5	250 250 250 250 250 250 250 250 250 250	Gnd Size 4 4 4 4 4 4 4 4 6 6 6 6 6	Disc. A 200 200 200 200 200 200 200 200 200 20	E4M33 Panel Board E4M31 E4M32 DP4M21 DP4M21 DP4M21 E4M32 E4M32 DP4M31 E4M32 E4M31 SWB-4M2 SWB-4M2 E4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EWB-4M32 E4M32 E4M32 SWB-4M3
AHU2 AHU3 AHU5	UNIT # SF1 SF2 SF3 SF4 SF1 SF2 SF3 SF4 SF1 SF2 SF3 SF4 SF1 SF2 SF3 SF4 EF1 EF2 EF3 EF5 EF5 EF5 EF7 EF7 EF7	Volt 480 480 480 480 480 480 480 48	Phase 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Fan HP 90 90 90 90 90 90 90 90 90 90 90 90 90	FLA 113 113 113 113 113 113 113 113 113 11	8VA 94 94 94 94 94 94 94 94 94 94 94 95 95 96 97 98 98 98 98 98 98 98 98 98 98 98 98 98	Wire 4 - #1/0 4 - #1	Wire amps 141.25	Conduit 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1"	Starter NEMA SIZE 4 NEMA SIZE 3	Load Amp 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5	250 250 250 250 250 250 250 250 250 250	Gnd Size 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6	Disc. A 200 200 200 200 200 200 200 200 200 20	E4M33 Panel Board E4M31 E4M32 DP4M21 DP4M21 DP4M21 E4M32 E4M32 DP4M31 E4M32 E4M31 SWB-4M2 SWB-4M2 E4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EWB-4M32 EWB-4M32 EWB-4M32 EWB-4M3
AHU2 AHU3 AHU5 EAHU1	UNIT # SF1 SF2 SF3 SF4 EF1 EF2 EF3 EF4 EF5 EF1 EF2 EF3	Volt 480 480 480 480 480 480 480 48	Phase 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Fan HP 90 90 90 90 90 90 90 90 90 90 90 90 90	FLA 113 113 113 113 113 113 113 113 113 11	8VA 94 94 94 94 94 94 94 94 94 94 95 96 97 98 98 98 98 98 98 98 98 98 98 98 98 98	Wire 4 - #1/0 6 - #1/0 6 - #1	Wire amps 141.25	Conduit 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1"	Starter NEMA SIZE 4 NEMA SIZE 3	Load Amp 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5	250 250 250 250 250 250 250 250 250 250	Gnd Size 4 4 4 4 4 4 4 4 6 6 6 6 6	Disc. A 200 200 200 200 200 200 200 200 200 20	Panel Board E4M31 E4M32 DP4M21 DP4M21 E4M32 E4M32 DP4M31 DP4M31 E4M32 E4M31 SWB-4M2 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EVP4M31 EWP4M31 EWP4M31 EWP4M31 EWP4M31 EWWB-4M3 EWWB-4M3 SWB-4M3
AHU2 AHU3 AHU5 EAHU1	UNIT # SF1 SF2 SF3 SF4 SF7 SF7 SF2 SF3 SF4 SF7 SF7 SF7 SF2 SF3 SF4 SF7 SF7 SF7 SF7 SF7 SF7 SF7	Volt 480 480 480 480 480 480 480 48	Phase 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Fan HP 90 90 90 90 90 90 90 90 90 90 90 90 90	FLA 113 113 113 113 113 113 113 113 113 11	8VA 94 94 94 94 94 94 94 94 94 94 95 96 97 98 98 98 98 98 98 98 98 98 98 98 98 98	Wire 4 - #1/0	Wire amps 141.25	Conduit 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1"	Starter NEMA SIZE 4 NEMA SIZE 3	Load Amp 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 282.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5	250 250 250 250 250 250 250 250 250 250	Gnd Size 4 4 4 4 4 4 4 4 6 6 6 6 6	Disc. A 200 200 200 200 200 200 200 200 200 20	E4M33 Panel Board E4M31 E4M32 DP4M21 DP4M21 E4M32 DP4M31 DP4M31 E4M32 E4M31 SWB-4M2 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EDP4M31 EWB-4M2 EWB-4M2 EWB-4M2 EWB-4M3 EWB-4M3 EWB-4M3 EWB-4M3 SWB-4M3 SWB-4M3 SWB-4M3 SWB-4M3 SWB-4M3 SWB-4M3 E4M32 SWB-4M3 E4M32 SWB-4M3 E4M32 SWB-4M3 E4M32 SWB-4M3

Nathaniel J. Mooney | Mechanical | Dr. William Bahnfleth | Final Report | 04/03/13

Design: Lighting

Due to the length of chilled beams the ceiling layout will be affected and a main component may need to be moved for effective placement of the chilled beams. The typical lighting for offices is volumetric series fluorescent lighting from Lithonia Lighting. Using AGI 32 lighting analysis software the movement of the lights for a typical office space was analyzed. A 2 T8 lamp 32watt 2x4 was analyzed against the placement of 2 2x2 24watt LED lights and 2 2x2 T5 14 watt lights in volumetric troffers. Typically offices are best when lit to be between 40-50 foot-candles by an overhead light. For any job that may require more task lighting on the desks can be utilized.

The room was designed using the following assumption for reflectance

Table 49: Surface Reflectance's

Surface	Reflect
Floor	0.65
Wall	0.70
Ceiling	0.75

Below is a breakdown of each lighting type and their room layouts.

Option 1

This first lighting breakdown is the typical for the office room type. As one can see in the following figures 31 & 32 lighting is reaching acceptable regions. The Problem with this layout is the chilled Beam will be placed in the center of the room for the best occupancy comfort due to symmetric throw patters, disrupting the lighting layout. Below there are 3 alternates studied to find the best new layout.

Figure 31: Original Lighting Layout

Figure 32: Rendered Original Lighting Layout

At first the original luminaire was rotated horizontally and moved closer towards the desk wall. This ensured higher illuminance. This can be seen in figure 33 & 34. One notable feature of this though is a very uneven distribution of light throughout the room. The areas around the wall opposite the desk fall to as low as 19 foot candles. A well-designed room should have a relatively uniform lighting so this layout is undesirable. Another option with the original light was just to move it to the left by one 2x4 unit. This leads to a semi ununiform layout, but the lighting concentration is on the area where the worker will primarily be. This layout can be seen in figure 35. If the original light is to be used this would be the best position for the light to be placed. And according to drillspot.com this light would only cost \$195.06/ EA-Each, so only \$195.06per office.

Figure 33: Lighting Layout Option 1

Figure 34: Rendered Lighting Layout 1

Figure 35: Rendered Lighting Layout Original Option 2

Option 2

The second option analyzed was the use of two 2x2 volumetric troffers with 3 T5 lamps in each at 14watts. Placement of these opens up an area in the center of the room for proper placement of the chilled beams. This layout also gave a good distribution of lighting throughout the entire office with very acceptable levels of illuminace as seen below in figure 36. One complaint of this set up could be the high light density of the walls closest to the lights as seen in figure 37, but this should not be too much of a disturbance for the occupants. This

Nathaniel J. Mooney

Mechanical

Dr. William Bahnfleth

Final Report

04/03/13

lights cost \$213.25 according to drillspot.com so each office would cost \$426.50 for the new lights.

Figure 36: Option 2 Lighting Layout

Figure 37: Option 2 Lighting Elevation Rendering

Figure 38: Option 2 Lighting Plan Rendering

Option 3

The third option looked into was using LED lights in a similar pattern to the T5 lamps. LED lamps have benefit over incandescent and fluorescent because of long life. Beams

do not have to be replaced as often so there is a potential for savings. There is also potential for energy savings in using LED lamps. LED's can potentially be 80% efficient at converting energy to light. Below figures 39, 40 & 41 show the illumination of the office room with very reasonable results. The desk has lighting levels of 23 to 43 which falls in an acceptable range. The only down side seen with they lay out is the same seen in the T5 layout. There is a high lighting density on the walls nearest the lights, but again this should not be too much of a problem. The LED lights do come at a greater cost; according to drillspot.com one unit is \$408.79. This means that by room the lighting fixture will cost \$817.58.

Figure 39: Option 3 Lighting Layout

Figure 40: Option 3 Lighting Plan Rendering

Figure 41: Option 3 Lighting Elevation Rendering

Summary

This lighting study analyzed three different lighting techniques for a typical office room. The most economical choice is to go with the original unit and move it to the left. The next is two 2x2 T5 volumetric troffers, then the LED volumetric troffers. The LEDs have the potential to save money in less purchasing and replacing of bulbs. There is also the potential in cost savings from the energy that could be saved by using the LED lamps.

Breadth II: Structural

Introduction

The removal of the air-handling unit on the first floor calls for an investigation into any possible changes to the structural design. Using the structural framing plans and the load assumptions for each room the beams, girders, and the columns were able to be designed. Below is the process to designing the beams, girder and columns.

Design

The first step in the design process is to find to loads the floor will carry, both dead and live loads. Below are the different loads that will be used in calculating the beam, girder and column sizes.

Uniformly distributed Floor live loads

- Basement, M1, M2, & M3......150 psf
- Roof Loads......125 psf

Floor:

3" x 18 ga. Composite Metal Deck (galvanized) with 4-1/2" normal weight concrete cover. Total thickness = 7-1/2". Reinforce slab with #4 @ 12" EA. Way TOP. = 75 psf (from Vulcraft Catalog)

Other:

- 5 psf Allowance for beam self-weight
- 2 psf allowance for girder weight
- **Un-shored Construction**

Design Calculations

In this section the design calculations of the beams, girders and columns will be reviewed. To get a better understanding of the layout of the system being analyzed figure 42 has been provided. This figure highlights the area to be examined (AHU1) and shows the current layout of the structural system. Figure 43 gives a even closer look to the exact area.

Figure 42: LEVEL M1 Structural Floor Plan

Figure 43: M1 Beam layout for AHU1

Beam Design:

Design load:

The dead load is compromised of the 75 psf vulcraft composite deck and a 5 psf allowance for the beams self-weight shown below...

Dead load =
$$75 \text{ psf} + 5 = 80 \text{ psf}$$

The live load was fond in the structural design conditions and is shown below.

The Next step is to see if the live load is allowed to be reduced using the equation below. The only condition to using this equation is that the influence area must be greater than 400ft. The influence area is the live load element factor (K_{LL}) times the tributary area (A_T)

LL Reduction = L=
$$L_o(0.25+15/V(k_{\parallel}A_t)$$

Figure 44: Beam Schematic

The area of the beam is shown in figure 44. The load element factor is found to be 2 from ASCE 7-05. Using these two variables K_{LL}A_T is found to be greater than 400 and thus reducible..

$$A_t=572 \text{ ft}^2$$
 $K_{||}=2$
 $K_{||}A_t=1144 > 400$ \Rightarrow The live load is reducible
 $LL_{reduced} = 150(0.25+(15/V(1144)) = 104.023 \text{ psf}$

Now that the Using this new live load the combined factored loads can be calculated using the formula (1.2 x D X width +1.6 x 104.023 x width)/1000. The number calculated is the distributed load along the beat per foot

$$W_u$$
= (1.2(80) (11) +1.6(104.023) (11))/ (1000) = 2.89 KLF

The beam shear and moment is able to be calculated using the formula found in table 3-23 of the AISC for beam formulas. Using these values the beam was able to be designed using the AISC Steel Construction Manual Table 3-2. Figures 45, 46, 47, were supplied to visualize the loads on the beam.

SHEAR:
$$V_u = ((2.89)(52))/2 = 75 \text{ Kips}$$

MOMENT:
$$M_u = ((2.89)(52^2))/8 = 976.82$$
 Ft Kips

From the AISC Steel Construction Manual Table 3-2

USE W 30 x 90

$$\Phi$$
 Mn = 1060 > 977.82

$$\Phi$$
 Vn = 374 > 75

Figure 45: Beam Load Diagram

Figure 46: Beam Shear Diagram

Figure 47: Beam Moment Diagram

Girder Design:

Next the Girder was designed for the floor area. Figure 48 shows the girder to be analyzed.

Figure 48: Girder Schematic

The loads for the floor area can be found below accounting for the 75 psf floor, 5 psf beam allowance and 2 psf girder allowances. The live load was found in the structural design conditions.

Loads:

$$LL = 150psf$$

Again the area was looked at to see if live load reduction could be used.

$$A_t$$
= 33 x (26 +18.75)=1476.75 > 400 \rightarrow Reducible

$$K_{II}=2$$

$$A_tK_{II}$$
=(2 x 1476.75)= 2953.5

$$LL_{reduction} = 150(.25 + (15/\sqrt{(2953.5))}) = 78.9 \text{ psf}$$

Using the new live load of 78.9psf and the same formula from the beam design a new combined factored load can be found for the girder.

$$W_u = \frac{1.2 \times 82 \text{ psf x } 11' + 1.6 \times 78.9 \times 11'}{1000} = 2.47 \text{ KLF}$$

To now find the shear in the girder this load must be multiplied by the width of the tributary area which is 18.75+26=44.75 '.The moment is then found by multiplying the shear by 11'. These formulas can be found in the AISC Table 3-23 figure 9- Simple Beam - two equal concentrated loads symmetrically placed.

$$V_u$$
= 2.247 x 26 + 2.247 x 18.75 = 110.58

$$M_U$$
= 110.58 x 11= 1216.37 ft kips

CHOOSE: W30 x 108

Below figures 49, 50 and 51 show the loading diagram and shear and moment diagrams for the girder.

Figure 49: Girder Load Diagram

Figure 50: Girder Shear Diagram

Figure 51: Girder Moment Diagram

Column Design

Lastly the column supporting this floor and the levels above must be designed. Figure 52 shows the column and tributary area. Columns are easiest to be analyzed using a table so table 50 was used in sizing the beam.

Figure 52: Column Design Schematic

The following equations find the tributary area and influence area of the column.

$$A_t$$
= (22 x (26+18.75)) = 984.5
 K_{ii} =4
 $K_{kk}A_t$ = 4 x 984.5 = 1969'

As said earlier it is easier to analyze columns using a table so the provided table below (Table 50) was used. The column must hold the floor weight of level M1, L-12 M2, M3 and the roof. In the Table the live load reduction was performed using the LL given in the design conditions and the equation below.

$$LL_{reduction} = LL (.25 + (15/((V(\#floors above(K_{LL}A_T)))))$$

The minimum value for (.25 + (15/((V(#floors above(KLLAT))))))) is 0.4

Next the axial load on the column is found using 1.2 times the tributary area and the dead load. A 1.6 multiplier is used upon the live load time the tributary area, and then the loads from the floors above are accumulated into the axial load of the column. Next the column is chosen assuming a splice at every floor (every

15 feet). The columns are chosen using Table 4-1 from AISC Construction Manual. The total weight is then calculated

Table 50: Column Loading Schedule

Floor	Column	# Floors Above	LL (PSF)	LL Reduction (PSF)	Pu (KIPS)	KI (FT)	Column Size	Length (FT)	Weight (PLF)	Total Weight (LBS.)
M1	12	4	150	75	1052.51	15	W10x112	15	112	1680
L-12	13	3	125	63	827.93	15	W10X88	15	88	1320
M2	14	2	150	63	623.05	15	W10x68	15	68	1020
M3	15	1	150	73	417.61	15	W10X49	15	49	735
ROOF	16	0	125	61	195.63	15	W10X33	15	33	495

Summary

The beams are girders and columns were all designed for 75 Ames building. Due to the large design loads there was not much of an effect on the structural design. That being said, figure 53 shows the layout of the newly designed structural system under the removed air handling unit on floor M1 using the methods from above.

Figure 53: New Columns Layout

Conclusion:

Chilled beams can be a very effective way of saving energy and reducing emissions and coupling this with demand controlled ventilation is able to bring even greater savings. The calculated savings for this location was \$604,658.99. Even though the upfront cost for the chilled beams may seem expensive at first because of the savings in supply air, fans and air handlers may be downsized, VAV boxes may be downsized or eliminated and ducts sizes may be decreased as well. This allowed for a very quick payback period and great savings in the long run,

Changing to a chilled beam may also have savings by lowering the wire and conduit sizes needed to supply all the downsized equipment. And although the larger chilled beams may have a larger footprint than a normal VAV diffuser lighting may not be too poorly effected if the right lights are chosen.

The Aircuity Optinet system along with energy and emissions savings can also be used to make sure employees are using proper lab safety techniques. By monitoring the total volume of contaminants per room and keeping a backup of the levels one can see rooms with continuously high levels of contaminants and talk to the occupants about why there may be such a problem occurring. So not only does a Aircuity system help the owner save money but it helps the occupants stay safe as well. Overall the change of the system is for the better both economically and environmentally

Works Cited

Aircuity. 2007. 14 12 2012 http://www.aircuity.com/wp-content/uploads/7d-Unique-Requirements- for-a-Facility-Monitoring-System.pdf>.

Aircuity. Sensor Suite Sensors. Newton, 2012.

AISC. AISC Steel Construction Manual. n.d.

Alexander, Darren. Design Considerations For Active Chilled Beams. 2008. 14 12 2012 http://doas.psu.edu/Active_Chilled_Beam_design_considerations_ASHRAE_Journal_%209_2008.pdf.

ANSI/ASHRAE. Standard 62.1-2010, Ventilation for Acceptable Indoor Air Quality. Atlanta, Georgia, 2010.

—. Standard 90.1-2010, Energy Standard for Buildings Except Low-Rise Residential Buildings. Atlanta, Georgia, 2010.

ASHRAE. Handbook of Fundamentals. Atlanta, Georgia, 2009.

Basic Information. 6 12 2012. 14 12 2012 http://www.epa.gov/chp/basic/index.html.

Bell & Gossett Centrifugal Pumps & Accessories . 2012. 04 2013 .

Cogeneration. 12 12 2012. 14 12 2012 http://en.wikipedia.org/wiki/Cogeneration>.

Cogeneration. 2012. 14 12 2012

http://www.fypower.org/bpg/module.html?b=offices&m=Distributed_Generation>.

"Combined Heat and Power A Clean Energy Solution." 8 2012. Energy Efficiency & Renewable Energy. 14 12 2012

http://www1.eere.energy.gov/manufacturing/distributedenergy/pdfs/chp_clean_energy_solution.pdf >.

Deru, M. and D Torcellini. Source Energy and Emission Factors for Energy Use in Buildings. Technical Report. Colorado: National Renewable Energy Laboratory, 2007.

Economic Benefits. 6 12 2012. 14 12 2012 http://www.epa.gov/chp/basic/economics.html.

EPA. Chilled beams in Laboratories: Key strateGies to ensure effeCtive desiGn, ConstruCtion, and oPeration . Vol. 04. 2013. 06 2009.

Green, Matt. Active Chilled Beam Technology. 12 2 2011. 14 12 2012 http://www.slideshare.net/illinoisashrae/active-chilled-beam-technology#btnNext.

Halton. "Halton Chilled Beams Design." 2013. Halton. 04 2013 http://www.halton.com/halton/cms.nsf/www/solutions_offices.

Lithonia Lighting. 2013. 04 2013

http://www.lithonia.com/pt/commercial+and+industrial+indoor/#.UVu83qt36hN.

Loren Cook Company. Engineering Cookbook. Springfield, MO, 1999.

Murphy, John. "Engineering Newsletter Volume 38-4." <u>Understanding Chilled Beams Systems</u>. Vol. 04. 2013. Prod. Trace. 2009.

—. Understanding Chilled Beam and VAV Systems. 2010.

NFPA. National Electric Code 2011. Quincy, 2011.

Price-HVAC. Linear High Efficiency Active Beam. 2013. 03 04 2013 http://www.price-price-hvac. Linear High Efficiency Active Beam. 2013. 03 04 2013 http://www.price-price-hvac. Linear High Efficiency Active Beam. 2013. 03 04 2013 http://www.price-price-hvac. Active Beam. 2013. 03 04 2013 http://www.price-hvac. Active Beam. 2013 http://www.price-hvac. Active Beam. 2013 http://www.price-hvac. Active Beam. 20 hvac.com/Catalog/Section_L/Active_Beams/ACBLHE.aspx>.

R&D Mag. "Airing Out Laboratory HVAC." August 2010. Aircuity.com. April 2013 http://www.aircuity.com/wp-content/uploads/RD-Magazine_Airing-Our-Lab- HVAC_2010_08_Eprint.pdf>.

Schurk, David. Chilled Beam Application & Control. 2 2012. 04 2013 http://www.automatedbuildings.com/news/feb12/articles/alc/120124021101alc.html>.

The Advantage Of LED Lights. http://www.lc-led.com/articles/ledlights.html.

Trox. "Trox Chilled Beam Design Guide." Trox. 04 2013

http://www.troxusa.com/usa/service/download_center/structure/technical_documents/air_water_sys tems/usa_products/leaflets/Chilled_Beam_Design_Guide.pdf>.

USGBC U.S. Green Building Council and LEED. "LEED 20009 For New Constuction And Major Renovations With Alternative Compliance Paths For Projects Outside The US." November 2011. United State Green Building Council LEED. 12 Novermber 2012.

Appendix A: ASHRAE 62.1 Ventilation Compliance Spreadsheet

AHU'S 1-4 %OA ANALYSIS

Building:		Delete Zone	75 AMES						
	ag/Name: g Condition Description:		AHU-1-2- Occupie		tior	1			
	ect from pull-down list)	Add Zone	IP			w/o diversity			w / diversity
Inputs for			Name	Units		System	Diversity		System
	Floor area served by system Population of area served by syste	em	As Ps	sf P	+	176713.6994 2.185	D 100%		2.185
	Design primary supply fan airflow r	ate	Vpsd	cfm		321,250	D 100%		321,250
	OA req'd per unit area for system (OA req'd per person for system are		Ras Rps	cfm/sf cfm/p		0.09 6.7			
	Does system have Outdoor Air Ec Outdoor air intake provided for		OA		fron	pull-down list 460,000			No
	Potentially Critical zones	system	- CA	Ciiii		400,000			
	She	ow Values per Zone							
	Zone Name								
			Zone title	turns pu	ırple	italic for critica	zone(s)		
	7 T								
	Zone Tag								
	Occupancy Category								
					fron	pull-down list:			
	Floor Area of zone Design population of zone		Az Pz	sf P	(de	efault value listed	l; may be overridde	n)	
	Design total supply to zone (prima		Vdzd	cfm					
	Induction Terminal Unit, Dual Fan I Frac. of local recirc. air that is repr		Er	Select	tron	n pull-down list o	r leave blank if N/A	·:	
Inputs for	Operating Condition Analyzed		Ds	%					57%
	Percent of total design airflow rate Air distribution type at conditioned	analyzed			fron	pull-down list:	Shaw as		
	Zone air distribution effectiveness a Primary air fraction of supply air at	at conditioned analyzed	Ez Ep		-		Show cod	ies t	or Ez
	Systems with Outdoor Air Econo								
	Outdoor air Temperature Supply Air Temperature		Toa Tp	Deg F	-			-	100
	Return Air Temperature		Tr	Deg F					
	Supply Fan Heat Gain Return Fan Heat Gain		dTsf dTrf	Deg F					
Results of	f Minimum ASHRAE 62.1 Ventila	tion Rate Procedure (EQp1)	Ev						0.41
	System Ventilation Efficiency Outdoor air intake required for	system (EQp1)	Vot	cfm					74,213
	Outdoor air per unit floor area		Vot/As	cfm/sf					0.42
	Outdoor air per person served by s Outdoor air as a % of design prima		<i>Vot/</i> Ps Ypd	cfm/p %					34.0 23%
Posults of	f 30% Increase beyond ASHRAE								
Results of	System Ventilation Efficiency with		Evz30						0.23
	Outdoor air intake required for syst Outdoor air per unit floor area for s		Vot30 2) Vot30/As	cfm					169,091 0.96
	Outdoor air per person served by s	ystem (including diversity) (EQ	c2) Vot30/Ps	s cfm/p					77.4
	Outdoor air as a % of design prima	ary supply air (EQc2)	Ypd30	%					53%
	Calculations								
Initial Cal	System primary supply air flow at	hole conditioned analyzed	Vps	cfm	_	Vpsd Ds		=	182815
	Uncorrected OA intake flow req'd for	or system	Vou	cfm	-	Rps Ps + Ras	As A -)*4 C	=	30522
	30% increase Uncorrected OA inta Uncorrected OA req'd as a fraction) Vou30 Xs	cfm	=	Vou / Vps	As)*1.3	=	39678 0.17
Initial Cal	30% increase Uncorrected OA req Iculations for individual zones	'd as a fraction of primary SA	Xs30		=	Vou30 / Vps		=	0.22
iiiiiai Cai	Area outdoor air rate		Ra	cfm/sf					
	People outdoor air rate Total supply air to zone (at condition	on being analyzed)	Rp <i>Vdz</i>	cfm/p cfm		Vdzd Ds			
	Primary airflow to zone (at condition		Vpz	cfm	-	Vdz Ep		=	
	Breathing zone outdoor airflow Breathing zone outdoor airflow with	30% increase (EAc2)	Vbz Vbz30	cfm cfm	=	Rp Pz + Ra Az (Rp Pz + Ra Az		=	
	Zone outdoor airflow		Voz	cfm	=	Vbz / Ez		-	
	Zone outdoor airflow with 30% incr Fraction of zone supply not directly		Voz30 Fa	cfm	=	Vbz30/Ez Ep + (1-Ep) Er			
	Fraction of zone supply from fully i	mixed primary air	Fb			Ep	4.50	-	
	Fraction of zone OA not directly re OA fraction required in the supply		<i>Fc</i> Zd		=	1-(1-Ez)(1-Ep)(Voz / Vdz	1-Er)	=	
	OA fraction required in the primary OA fraction required in the supply	air to the zone	Zpz			Voz / Vdz Voz / Vpz		=	
	OA fraction required in the supply		Zd30 <i>Zpz30</i>			Voz30 / Vdz Voz30/ Vpz		=	
System V	Zone Ventilation Efficiency (App A		Evz			(Fa+FbXs-FcZ	nzEn)/Ea		
	Zone Ventilation Efficiency with 30	% increase (EAc2) (App A)	Evz30		=	(Fa+FbXs-FcZ		-	
	System Ventilation Efficiency (App System Ventilation Efficiency (Tab	o A Method) de 6.3 Method)	Ev Ev		=	min (Evz) Value from Tab	le 6.3	=	0.41 n/a
	System Ventilation Efficiency w/ 3	0% increase (EAc2) (App A)	Ev30		-	min (<i>Evz30</i>)		-	0.23
Minimum	System Ventilation Efficiency w/ 3 outdoor air intake airflow (EQp		Ev30			Value from Tab	6 0.3		n/a
	Outdoor Air Intake Flow required to OA intake req'd as a fraction of prin	System	Vot Y	cfm		Vou / Ev		=	7421: 0.4
	Outdoor Air Intake Flow required to	System (Table 6.3 Method)	Vot	cfm		Vot / Vps Vou / Ev		=	n/a
Time-ave	OA intake req'd as a fraction of prin	mary SA (Table 6.3 Method)	Y			Vot / Vps		-	n/a
ave	Time period with high occupancy		Th	min					
	Room height Time period over which averaging of	an take place	h T	ft min	=	3 v / Vbz		_	
	Error - sum of all values above will								E4: 0-
30% incre	Error flag ase beyond Minimum Outdoor a	ir intake airflow (EQc2)							FALSE
	Outdoor Air Intake Flow required to	System	Vot30	cfm		Vou / Ev		-	169091
	OA intake req'd as a fraction of prin		Y30			Vot / Vps		=	0.92
	Outdoor Air Intake Flow required to	System (Table 6.3 Method)	Vot30	cfm		Vou / Ev			
OA Tema	Outdoor Air Intake Flow required to OA intake req'd as a fraction of prin at which Min OA provides all co	mary SA (Table 6.3 Method)	<i>Vot30</i> Y30	cfm		Vou / Ev Vot / Vps			n/a n/a

Nathaniel J. Mooney | Mechanical | Dr. William Bahnfleth

Final Report

04/03/13

0018 - EHS STORAGE	B0013 - FUEL OIL STORAGE	B0011 - MECH/PLUM BING	B0012 - HOLDING	B0010 - FIRE PUMP	B000LA - FIRE SERVICE ACCESS LOBBY	B0001 - FACILITIES	B0005 - MICROBULK NIT4 CO2	B0003 - BIO WASTE	VESIBULE	1000CB - PASSAGE
0-1	0-3	0-5A, 0-5B	0-7	0-9	0-11	0-13	0-15	0-17	0-19	1-1
Storage rooms	Storage rooms	Elec/mech equipment rooms	Storage rooms	Elec/mech equipment rooms	Corridors	Storage rooms	Unocc / Not Used	Storage rooms	Corridors	Corridors
101 0 300	690 0 1,950	2,647 0 2,600	320 0 325	501 0 525	211 0 300	75 0 200	203 0 200	195 0 750	86 0 200	2
1600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600
50% CSCRW	100% CSCRW	56% CSCRW	46% CSCRW	48% CSCRW	50% CSCRW	50% CSCRW	50% CSCRW	50% CSCRW	100% CSCRW	100 CSCF
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00	1
1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1
0.00 0.00 150 150 0	0.00 0.00 1950 1950 0	0.00 1450 1450 0 0	0.00 0.00 150 150 0	0.00 0.00 250 250 0	0.06 0.00 150 150 13	0.00 0.00 100 100 0	0.00 0.00 100 100 0	0.00 0.00 375 375 0	0.06 0.00 200 200 5 7	0 0 2 2
0 0 1.00 1.00 1.00 0.00	0 0 1.00 1.00 1.00 0.00	0 1.00 1.00 1.00	0 0 1.00 1.00 1.00 0.00	0 0 1.00 1.00 1.00 0.00	13 16 1.00 1.00 1.00 0.08	0 0 1.00 1.00 1.00 0.00		0 0 1.00 1.00 1.00 0.00	5 7 1.00 1.00 1.00 0.03	1 1 1 0
0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.08 0.11 0.11	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.03 0.03 0.03	0 0
1.17 1.22	1.17 1.22	1.17	1.17 1.22	1.17 1.22	1.08 1.11	1.17 1.22	1.17 1.22	1.17 1.22	1.14 1.18	1
9 27270000										
27272320 FALSE										
Na	thaniel J.	Mooney	Mech	anical	Dr. Willia	am Bahnf	leth F	inal Repo	rt 04	/03/13

015 - FCC	1011 - LOBBY	1007 - MANAGER	1003 - LOADING DOCK	1000LV - VIVARIUM ELEV LOBBY	1000LA - SERVICE ELEV LOBBY	1012 - PH NEUT	1000LB - ELEVATOR LOBBY	1010 - SECURITY	1008 - VIRGIN CHEM STORAGE (H- 2)	1006 - WASTE CHEM STORAGE (H- 2)	2000CA - BREAKOUT CONNECTOR	2001 - MULTIPURP OSE CONFERENC E	2001 - MULTIPURP OSE CONFERENC E
1-3	1-5	1-9	1-11, 1-13	1-15	1-17	1-19	1-21	1-23	1-25	1-27	2-1, 2-3	2-5	2-7
nocc / Not Used	Main entry lobbies	Office space	Unocc / Not Used	Corridors	Corridors	Unocc / Not Used	Corridors	Telephone closets	Storage rooms	Storage rooms	Corridors	Conference/ meeting	Conference meeting
186	876 8.76	84 0.42	1,966	82 0	131 0	135 0	163 0	94	116	173	2,100	788 39.375	39.3
300	1,200	200	2,200	400	400	1,300	400	850	650	600	2,100	1,500	1,5
50%	100%	100%	100%	100%	100%	100%	100%	41%	50%	50%	50%	50%	50
CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCR 1.
1.00	1.00 1.00		1.00	1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00	1.00	1.00	1.00	1.00	
0.00 0.00 150 150 0 0	125 96	5.00 200 200 7 9 7	0.00 0.00 2200 2200 0 0	0.06 0.00 400 400 5 6 5	0.06 0.00 400 400 8 10	0.00 0.00 1300 1300 0 0	0.06 0.00 400 400 10 13	0.00 0.00 350 350 0 0	0.00 325 325 0 0	0.00 300 300 0 0	0.06 0.00 1050 1050 126 164 126	5.00 750 750	5. 7 7 2 3
1.00 1.00 1.00 0.00 0.00	1.00 1.00 1.00 0.08 0.08	1.00 1.00 1.00 0.04	1.00 1.00 1.00 0.00 0.00	1.00 1.00 1.00 0.01 0.01	10 1.00 1.00 1.00 0.02 0.02	1.00 1.00 1.00 0.00 0.00	13 1.00 1.00 1.00 0.02 0.02	1.00 1.00 1.00 0.00 0.00	1.00 1.00 1.00 0.00		1.00 1.00 1.00 0.12 0.12	1.00 1.00 1.00 0.33 0.33	1.
0.00	0.10 0.10	0.05	0.00	0.02 0.02	0.03 0.03	0.00	0.03 0.03	0.00 0.00		0.00 0.00	0.16 0.16	0.42 0.42	
1.17 1.22	1.09 1.11	1.13 1.17	1.17 1.22	1.15 1.20	1.15 1.19	1.17 1.22	1.14 1.19	1.17 1.22		1.17 1.22	1.05 1.06	0.84 0.79	
	Nathan	iel J. Mo	ooney	Mec	hanical	Dr.	Willian	n Bahnf	leth	Final	Report	04,	/03/1

2007 - FREEZER ROOM	2011 - PRE PCR	2006 - WARM ROOM	2008 - COLD ROOM	2005 - RNAi LAB	2015 - RNAi LAB	2035 - DNA CLEAN LAB	2025 - CLONE PRODUCTIO N CLEAN LAB	2053 - OFFICE	2051 - LAB DESKS	2058E - ELEC	2000LB - ELEVATOR LOBBY
2-9	2-11	2-13	2-13	2-15A, 2-15B	2-17A, 2-17B	2-19	2-21	2-23	2-25	2-27	2-29
Storage rooms	Science laboratories	Storage rooms	Storage rooms	Science laboratories	Science laboratories	Science laboratories	Science laboratories	Office space	Office space	Elec/mech equipment rooms	Corridors
998 0 925	186 3 400	112 0 25	151 0 50	1,345 24 3,600	1,374 19 3,600	237 5 600	273 6 750	159 1 250	448 2.2382 1,100	236 0 850	379 0 400
600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00
51% CSCRW 1.00	63% CSCRW 1.00	100% CSCRW 1.00	100% CSCRW 1.00	35% CSCRW 1.00	35% CSCRW 1.00	100% CSCRW 1.00	100% CSCRW 1.00	50% CSCRW 1.00	50% CSCRW 1.00	41% CSCRW 1.00	100% CSCRW 1.00
1.00		1.00 1.00	1.00 1.00		1.00	1.00		1.00	1.00	1.00	1.00 1.00
0.00 0.00 475	10.00 250	0.00 0.00 25	0.00 0.00 50	10.00 1250	0.18 10.00 1250	0.18 10.00 600	10.00 750	0.06 5.00 125	0.06 5.00 550	0.00 0.00 350	0.06 0.00 400
475 0 0 0	63 82	25 0 0 0	50 0 0	482 627	1250 437 568 437	600 93 121 93	109 142	125 15 19 15	550 38 49 38	350 0 0 0	400 23 30 23
0 1.00 1.00	82 1.00 1.00	0 1.00 1.00	0 1.00 1.00	627 1.00 1.00	568 1.00 1.00	121 1.00 1.00	142 1.00 1.00	19 1.00 1.00	49 1.00 1.00	0 1.00 1.00	30 1.00 1.00
1.00 0.00 0.00 0.00	0.25 0.25	1.00 0.00 0.00 0.00	1.00 0.00 0.00 0.00	0.39 0.39	1.00 0.35 0.35 0.45	0.15 0.15	0.15 0.15	1.00 0.12 0.12 0.15	0.07	1.00 0.00 0.00 0.00	1.00 0.06 0.06 0.07
0.00	0.33	0.00	0.00	0.50	0.45	0.20	0.19	0.15	0.09	0.00	0.07
1.22	0.89	1.22	1.22	0.72	0.76	1.02	1.03	1.07	1.13	1.22	1.14

2040 - MEN, 2044 - WOMEN, 2000CB - CORRIDOR, 2000LA - FIRE SERVICE ACCESS LOBBY	3000CA - BREAKOUT/C ONNECTOR	3001 - LARGE CONFERENC E	3005 - COPY	3007 - OFFICE, 3011 - OFFICE, 3009 - OFFICE	3013 - OFFICE	3000CC - CORRIDOR	3008 - OFFICE, 3022 - OFFICE	3010 - OFFICE, 3020 - OFFICE	3015 - OFFICE, 3017 - OFFICE, 3019 - OFFICE	3026 - LAB SUPPORT	3029 - TISSUE CULTURE ROOM	3035 - NOVEL THERAPEUTI CS/ CHEM BIO	3053 - LAB DESKS
2-31, 2-33	3-1, 3-3	3-5	3-7	3-9	3-11	3-13	3-15	3-17	3-19	3-21	3-25	3-27A, 3-27B, 3-27C, 3-27D, 3-27E, 3-27F, 3-27G	3-27H
Corridors	Corridors	Conference/ meeting	Corridors	Office space	Office space	Corridors	Office space	Office space	Office space	Storage rooms	Science laboratories	Science laboratories	Office space
1,460	1,352	626 31.2855	167	449	268 1	234 0	419 8	274	254 5	148 0	314	3,163 27	782 3.91
1,600	2,400	1,280	150	525	300	125	400	350	525	500	1,500		1,650
100% CSCRW 1.00	50% CSCRW 1.00	50% CSCRW 1.00	100% CSCRW 1.00	48% CSCRW 1.00	50% CSCRW 1.00	100% CSCRW 1.00	50% CSCRW 1.00	50% CSCRW 1.00	48% CSCRW 1.00	50% CSCRW 1.00	100% CSCRW 1.00	17% CSCRW 1.00	11% CSCRW 1.00
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
0.06 0.00 1600 88 114 88 114 1.00 1.00 0.05 0.05	0.00 1200 1200 81 105 81 105 1.00 1.00	5.00 640 640 194 252 194 252 1.00 1.00	13	5.00 250 250 72 94 72 94 1.00 1.00	5.00 150 150 21 27 21 27 1.00 1.00	0.00 125 125 14 18 14 18 1.00 1.00	5.00 200 200 65 85 65 85 1.00	5.00 175 175 46 60 46 60 1.00 1.00	5.00 250 250 40 52 40 52 1.00 1.00 1.00	0.00 250 250 0 0 0 1.00 1.00 1.00	10.00 1500 1500 97 125 97 125 1.00 1.00	10.00 3500 3500 839 1091 839 1091 1.00 1.00 1.00	0.06 5.00 180 66 86 66 66 1.00 1.00 0.37
0.07 0.07	0.09	0.39	0.09 0.09	0.37	0.18	0.15		0.34	0.21	0.00 0.00	0.08	0.31	0.48 0.48
1.11 1.15			1.10 1.13				0.84 0.79			1.17 1.22			0.80 0.74

3000LB - ELEVATOR LOBBY	3058E - ELEC	3044 - WOMEN, 3040 - MEN, 3000CE - CORRIDOR, 3000LA - FIRE SERVICE ACCESS LOBBY	4007 - OFFICE, 4009 - OFFICE,4011 - OFFICE	4013 - OFFICE	4015 - OFFICE	4017 - OFFICE	4010 - OFFICE, 4012 - OFFICE	4008 - OFFICE, 4016 - OFFICE	4023 - OFFICE, 4021 - OFFICE, 4019 - OFFICE	4020 - OFFICE, 4024 - OFFICE, 4022 - OFFICE	4018 - OFFICE, 4034 - OFFICE, 4014 - OFFICE	4032 - OFFICE	4031 - MEDIUM CONFERENC E ROOM	4036 - OFFICE	4047 - LAB SUPPORT
3-33	3-35	3-37, 3-39	4-1	4-3	4-5	4-7	4-9	4-11	4-13	4-15	4-17	4-19	4-21	4-23	4-25
Corridors	Elec/mech equipment rooms	Corridors	Office space	Office space	Office space	Office space	Office space	Office space	Office space	Office space	Office space	Office space	Conference/ meeting	Office space	Storage rooms
360 0	249 0	1,347 0	392 8	275 1	170	135	260 6	320 8	465 6	390 9	475 12	4	251 12.55	154 i 4	281
600.00	850 600.00	1,600	525 600.00	300 600.00	600.00	600.00	600.00	600.00	600.00	525	600.00	600.00	525	600.00	600.00
100% CSCRW	41% CSCRW	100% CSCRW	48% CSCRW	50% CSCRW	50% CSCRW	100% CSCRW	50% CSCRW	50% CSCRW	50% CSCRW	48% CSCRW	50% CSCRW	50% CSCRW	48% CSCRW	50% CSCRW	50% CSCRW
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.00		1.00						1.00							
0.06 0.00 400 400 22 28 1.00 1.00 0.05 0.05	0.00 350 350 0 0 0 1.00 1.00 1.00 0.00	0.06 0.00 1600 81 105 81 105 1.00 1.00 0.05 0.05	5.00 250 250 64 83 64 83 1.00 1.00 0.25 0.25	5.00 150 150 22 28 22 28 1.00 1.00 0.14 0.14	5.00 200 200 25 33 25 33 1.00 1.00 0.13 0.13	5.00 400 400 23 30 23 30 1.00 1.00 0.06 0.06	5.00 200 200 46 59 1.00 1.00 0.23 0.23	5.00 200 200 59 77 59 77 1.00 1.00 0.30	5.00 400 400 58 75 58 75 1.00 1.00 0.14 0.14	5.00 250 250 68 89 68 89 1.00 1.00 1.00 0.27 0.27	5.00 300 300 89 115 89 115 1.00 1.00 0.30	5.00 100 100 29 38 29 38 1.00 1.00 1.00 0.29 0.29	5.00 250 250 78 101 1.00 1.00 1.00 0.31 0.31	5.00 100 100 3 29 38 4 29 38 1 1.00 1.00 0.29 0.29	0.00 300 0 0 0 1.00 1.00 1.00 0.00 0.00
1.11 1.15	1.17 1.22	1.12 1.15		1.02 1.03				0.87 0.83	1.02 1.03						1.17 1.22

4038 - PRE PCR LAB	4045 - POST PCR LAB BL2	4053 - LAB DESKS	4058E - ELEC	4000LB - ELEVATOR LOBBY	4040 - MEN, 4044 - WOMEN, 4000CE - CORRIDOR, 4000LA - FIRE SERVICE ACCESS LOBBY	4000CA - BREAKOUT/C ONNECTOR	4005 - COPY	4001 - LARGE CONFERENC E
4-27	4-29A, 4-29B	4-31	4-33	4-35	4-37, 4-39	4-41, 4-43	4-45	4-47
Science laboratories	Science laboratories	Office space	Elec/mech equipment rooms	Corridors	Corridors	Corridors	Corridors	Conference/ meeting
283 6	1,366 23	630 3.15	248 0	522 0	1,413 0	1,226 0	147 0	622 31.1
800	2,800	1,500	850	400	1,600	2,400	150	1280
50%	45%	50%	41%	100%	100%	88%	100%	50%
1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	1.00	CSCRW 1.00	CSCRW 1.00	2 CSCRW 1.00	1.00
1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00	1.00 1.00	1.00
0.18 10.00 400 400 111 144 1.11 1.00 1.00 1.	10.00 1250 476 619 476 619 1.00 1.00 0.38 0.38	1.00 1.00 1.00 0.07 0.07 0.09	0.00 0.00 350 350 0 0 1.00 1.00 0.00 0.00	1.00 1.00 1.00 0.08 0.08 0.10	0.06 0.00 1600 1600 85 110 85 110 1.00 1.00 0.05 0.05	1.00 1.00 1.00 0.04 0.04 0.05	0.06 0.00 150 150 9 11 1 1.00 1.00 0.06 0.06	1.00 1.00 1.00 0.30 0.30 0.39
0.36		0.09	0.00	0.10	0.07	0.05	0.08	0.39
0.86	0.72	1.12	1.22	1.12	1.15	1.17	1.14	0.83

4001 - LARGE CONFERENC E	5007 - OFFICE, 5009 - OFFICE, 5011 - OFFICE	5013 - OFFICE	5008 - WORKSTATI ONS	5012 - WORKSTATI ONS	5000CC - CORRIDOR	5019 - OFFICE, 5017 - OFFICE, 5015 - OFFICE	5021 - MEDIUM CONFERENC E	5022 - LAB DESKS, 5030 - LAB DESKS, 5028 - LAB DESKS	5036 - COLD ROOM	5038 - FREEZER ROOM	5045 - RNAi BL2+ LAB	5035 - RNAi BL2+ LAB	5058E - ELEC	5000LB - ELEVATOR LOBBY	5000CE - CORRIDOR, 5000LA - FIRE SERVICE ACCESS LOBBY, 5040 - MEN, 5044 - WOMEN
4-47	5-1	5-3	5-5	5-7	5-9	5-11	5-13	5-15	5-17	5-19	5-23A, 5-23B, 5-25	5-27A, 5-27B, 5-27C, 5-27D	5-39	5-41	5-43
Conference/ meeting	Office space	Office space	Office space	Office space	Corridors	Office space	Conference/ meeting	Office space	Storage rooms	Storage rooms	Science laboratories	Science laboratories	Elec/mech equipment rooms	Corridors	Corridors
622 31.1	429 6	179 1	4	457 8	276 0	5	252 12.6	466 18	107 0	255 0	1,509 12	2,077 12	247 0	0	0
1280	525	300	400	1,000	300	475	400	450	35	800	3,850	5,250	850	400	1,700
50%	48%	50%	50%	50%	100%	53%	50%	50%	100%	100%	90%	100%	100%	100%	100%
CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00
1.00	1.00	1.00			1.00		1.00		1.00	1.00	1.00		1.00		
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
0.06 5.00 640 640		0.06 5.00 150 150	5.00 200 200	5.00 500 500	0.06 0.00 300 300	5.00 250 250	0.06 5.00 200 200	5.00 225 225	0.00 0.00 35 35	0.00 0.00 800 800		10.00 5250 5250	0.00 850 850	0.00 400 400	0.00 1700 1700
193 251 193	56 72 56	16 20 16	48	67 88 67	17 22 17	59	78 102 78	153	0 0 0	0	392 509 392	642	0 0	27	114
251 1.00	72 1.00	20 1.00	48 1.00	88 1.00	22 1.00	59 1.00	102 1.00	153 1.00	0 1.00	0 1.00	509 1.00	642 1.00	0 1.00	27 1.00	114 1.00
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
0.30 0.30 0.39	0.22 0.22 0.29	0.10 0.10 0.14	0.18		0.06 0.06 0.07	0.18	0.39 0.39 0.51		0.00 0.00 0.00	0.00 0.00 0.00	0.11 0.11 0.15	0.09 0.09 0.12	0.00	0.05	0.05
0.39	0.29	0.14		0.18	0.07		0.51	0.68	0.00	0.00	0.15				
0.87 0.83	0.94 0.93	1.06 1.08	0.98 0.98	1.03 1.04	1.11 1.15	0.99 0.98	0.78 0.71	0.64 0.54	1.17 1.22	1.17 1.22	1.05 1.07	1.07 1.09	1.17 1.22	1.11 1.15	1.12 1.15

5000CA - BREAKOUT/C ONNECTOR	5001 - LARGE CONFERENC E	5005 - COPY	6007 - OFFICE, 6009 - OFFICE, 6011 - OFFICE, 6013 - OFFICE	6013 - OFFICE	6008 - OFFICE, 6020 - OFFICE	6010 - OFFICE, 6012 - OFFICE	6015 - OFFICE, 6017 - OFFICE	6019 - OFFICE, 6021 - OFFICE	6014 - OFFICE, 6016 - OFFICE, 6028 - OFFICE	6018 - OFFICE, 6024 WORKSTATI ONS	6023 - OFFICE, 6029 - OFFICE	6026 - OFFICE, 6030 - OFFICE	6040 - MEN, 6044 - WOMEN, 6000CA - CORRIDOR, 6000LB - ELEVATOR LOBBY, 6000LA - FIRE SERVICE ACCESS LOBBY	6031 - LARGE CONFERENC E
5-45, 5-47	5-49	5-51	6-1	6-3	6-7	6-9	6-11	6-13	6-15	6-17	6-23	6-25	6-27, 6-43	6-29
Corridors	Conference/ meeting	Corridors	Office space	Office space			Office space				Office space		Corridors	Conference/ meeting
1,365 0 2,400	635 31.75 1,250	151 0 200	649 8 525	266 1 300	358 4 400	218 1 400	249 5 375	250 4 400	348 5 525	474 7 600	4	6	1,889 0 1,600	419 20.95 900
50% CSCRW 1.00	50% CSCRW 1.00	100% CSCRW 1.00	52% CSCRW 1.00	50% CSCRW 1.00	50% CSCRW 1.00	50% CSCRW 1.00	53% CSCRW 1.00	50% CSCRW 1.00	48% CSCRW 1.00	50% CSCRW 1.00	50% CSCRW 1.00	50% CSCRW 1.00	100% CSCRW 1.00	50% CSCRW 1.00
1.00 1.00		1.00 1.00		1.00 1.00						1.00 1.00			1.00	
0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	i 0.06
0.00 1200 1200 82	5.00 625 625		5.00 275 275	5.00 150 150	5.00 200 200 41	5.00	5.00 200 200	5.00 200 200	5.00 250 250	5.00 300 300	5.00 200 200	5.00 200 200	0.00 1600 1600 113	5.00 450 450
106 82 106	256 197 256	12 9 12	103 79 103	27 21 27	54 41 54	24 18 24	52 40 52	46 35 46	60 46 60	82 63 82	57 44 57	64 49 64	147 113 147	169 130 169
1.00 1.00 1.00 0.07	1.00 1.00	1.00	1.00 1.00	1.00 1.00	1.00 1.00 1.00 0.21	1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00 1.00 0.07	1.00
0.07 0.09 0.09	0.31 0.41		0.29 0.37		0.21 0.27	0.09	0.20 0.26	0.18 0.23	0.18 0.24	0.21 0.27	0.22 0.29	0.24 0.32	0.07 0.09 0.09	0.29
1.10 1.13		1.12 1.16											1.10 1.12	

6032 -	6048 -	6055 -	6053 -	6047 -	6091 -	6095 -	6099 -	6103 -	6109 -	6111 -	6106 -	6080 -	6092 -	6060E1 -
SCIENTIFIC	OFFICE, 6050	OFFICE, 6057	OFFICE	OFFICE, 6049	OFFICE	OFFICE, 6093	OFFICE, 6101	OFFICE	OFFICE, 6107	OFFICE, 6113	OFFICE, 6108	OFFICE, 6082	OFFICE, 6094	ELEC, 6058E2
LIVING ROOM	- OFFICE	- OFFICE, 6053 - OFFICE		- OFFICE		- OFFICE	- OFFICE, 6097 - OFFICE		- OFFICE, 6105 - OFFICE	- OFFICE	- OFFICE	- OFFICE, 6084 - OFFICE	- OFFICE	- ELEC
6-31	6-33	6-35	6-37	6-39	6-47	6-49	6-51	6-53	6-55	6-57	6-59	6-61	6-63	6-65
Break rooms	Office space	Office space	Office space	Office space	Office space	Office space	Office space	Office space	Office space	Office space	Office space	Office space	Office space	Elec/mech equipment rooms
323 6	262 6	518	254	261 5	235 4	255 6	384 9	264	421	274	397 9		394 8	227 0
1,000	350	375	400	350	350	350	575	275	625	400	525		350	1,350
600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00
50%	50%	47%	50%	50%	50%	50%	52%	55%	48%	50%	52%	52%	50%	26%
CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00		CSCRW 1.00	CSCRW 1.00
1.00	1.00				1.00			1.00						
1.00	1.00	1.00			1.00		1.00	1.00						1.00
0.06 5.00 500 500 49 64	0.06 5.00 175 175 46 59	5.00 175 175 46	5.00 200 200 25	5.00 175 175 41	0.06 5.00 175 175 34 44	5.00 175 175 45	5.00 300 300 68	0.06 5.00 150 150 21 27	5.00 300	5.00 200 200 26	5.00 275 275 69	5.00 275 275 69	5.00 175 175 64	0.00 0.00 350 350 0
49 64	46 59	60	33	53	34 44	59	88	21 27	85	34	89	89	83	
1.00 1.00	1.00 1.00	1.00 1.00			1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00		1.00 1.00	1.00 1.00	1.00 1.00	1.00
1.00 0.10	1.00 0.26					1.00	1.00	1.00 0.14					1.00	1.00
0.10 0.13	0.26 0.34	0.26	0.13	0.23	0.19 0.25	0.26	0.23	0.14 0.18	0.22	0.13	0.25	0.25	0.36	0.00
0.13	0.34				0.25		0.29	0.18	0.28			0.33		0.00
1.07 1.09	0.91 0.88	0.90 0.87			0.97 0.96			1.03 1.04				0.92 0.89		1.17 1.22

Office space Office space Office space Conference/ Corridors Office space Science Storage Office space Office space Office space Conference/ Science St	6074 - OFFICE, 6078 - OFFICE	6062 - OFFICE, 6064 - OFFICE	6068 - OFFICE, 6070 - OFFICE, 6072 - OFFICE	6116 - SMALL CONFERENC E	6000CP - CORRIDOR	6112 - OFFICE, 6114 - OFFICE	6115 - GSAP LAB	6130 - COLD ROOM	6133 - LAB DESKS	6135 - LAB DESKS, 6137 - LAB DESKS	6139 - LAB DESKS	6141 - MEETING	6128 - TISSUE CULTURE	6132 - CLEAN ROOM
	6-67	6-69	6-73	6-75	6-79	6-77		6-89	6-91	6-93	6-95	6-95	6-99	6-101
S	Office space	Office space	Office space		Corridors	Office space			Office space	Office space	Office space			Storage rooms
350 350 350 400 350 7,500 38 200 400 200 200 1,200									112					152 0
SCRW CSCRW CSCRW					400	350			200					300
SCRW CSCRW CSCRW	50%	50%	52%	50%	100%	50%	49%	100%	50%	75%	75%	75%	100%	67%
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	CSCRW	CSCRW	CSCRW	CSCRW	CSCRW	CSCRW	CSCRW	CSCRW	CSCRW	CSCRW	CSCRW	CSCRW	CSCRW	CSCRW 1.00
5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 10.00 10.00 175 175 275 175 400 175 3700 35 100 300 150 150 1200 1200 150 1200 150 150 1200 1200 150 1200 150 150 1200 1200 150 150 1200 150 150 1200 1200 150 150 1200 1200 150 150 1200 1														1.00
5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 10.00 175 175 275 175 400 175 3700 35 100 300 150 150 1200 40 36 68 46 33 34 1208 0 22 67 33 28 58 52 47 88 60 43 45 1570 0 28 87 43 36 75 40 36 68 46 33 34 1208 0 22 67 33 28 58 40 36 68 46 33 34 1208 0 22 67 33 28 58 52 47 88 60 43 45 1570 0 28 87 43 36 75 1.00 1.00 1.														
5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 10.00 175 175 275 175 400 175 3700 35 100 300 150 150 1200 40 36 68 46 33 34 1208 0 22 67 33 28 58 52 47 88 60 43 45 1570 0 28 87 43 36 75 40 36 68 46 33 34 1208 0 22 67 33 28 58 40 36 68 46 33 34 1208 0 22 67 33 28 58 52 47 88 60 43 45 1570 0 28 87 43 36 75 1.00 1.00 1.														
175 175 275 175 400 175 3700 35 100 300 150 150 1200 40 36 68 46 33 34 1208 0 22 67 33 28 58 58 52 47 88 60 43 45 1570 0 28 87 43 36 75 40 36 68 46 33 34 1208 0 22 67 33 28 58 58 52 47 88 60 43 45 1570 0 28 87 43 36 75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	5.00	5.00	5.00	5.00	0.00	5.00	10.00	0.00	5.00	5.00	5.00	5.00	10.00	0.00 0.00 200
40 36 68 46 33 34 1208 0 22 67 33 28 58 58 52 47 88 60 43 45 1570 0 28 87 43 36 75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	175 40	175 36	275 68	175 46	400 33	175 34	3700 1208	35 0	100 22	300 67	150 33	150 28	1200 58	200 0 0
1.00 1.00	40	36	68	46	33	34	1208	0	22	67	33	28	58	0
0.23 0.21 0.25 0.26 0.08 0.20 0.33 0.00 0.22 0.22 0.22 0.19 0.05 0.23 0.21 0.25 0.26 0.08 0.20 0.33 0.00 0.22 0.22 0.22 0.19 0.05 0.29 0.27 0.32 0.34 0.11 0.26 0.42 0.00 0.28 0.29 0.29 0.24 0.06 0.94 0.96 0.92 0.90 1.09 0.97 0.84 1.17 0.95 0.94 0.94 0.94 0.98 1.12	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00
0.29 0.27 0.32 0.34 0.11 0.26 0.42 0.00 0.28 0.29 0.29 0.24 0.06 0.94 0.96 0.92 0.90 1.09 0.97 0.84 1.17 0.95 0.94 0.94 0.98 1.12	0.23	0.21	0.25	0.26	0.08	0.20	0.33	0.00	0.22	0.22	0.22	0.19	0.05	1.00 0.00 0.00
														0.00 0.00
														1.17 1.22

6122 - FREEZER ROOM	6124 - BL2+ VIRAL PREP	6000CR - CORRIDOR	6120 - PRE PCR	6118 - GEL ROOM	6143 - MEDIUM CONFERENC E	6145 - BREAK AREA, UNAMED SPACE NEXT TO 6145	6000 - ATRIUM	7001 - BREAK AREA	7011 - MEDIUM CONFERENC E	7015 - OFFICE, 7017 - OFFICE, 7019 - OFFICE	7025 - OFFICE, 7027 - OFFICE	7003 - OPEN OFFICE
6-107	6-103	6-105	6-109	6-111	6-113	6-115	6-117A, 6- 117B, 6-121	7-1	7-3	7-5	7-7	7-9, 7-11, 7- 15, 7-19
Storage rooms	Science laboratories	Corridors	Science laboratories	Science laboratories	Conference/ meeting	Break rooms	Multi-use assembly	Break rooms	Conference/ meeting	Office space	Office space	Office space
483 0	225	325 0	173	155 3	183 9.15	301 10	1,347 125	574 14.35	368 18.4	383 1.915	255 1.275	3,776 18.88
600.00	1,200 600.00	250	375 600.00	375 600.00	600.00	600.00	3,300	750	600.00	525	350	4,725
100% CSCRW	100% CSCRW	60% CSCRW	53% CSCRW	53% CSCRW	50% CSCRW	50% CSCRW	45% CSCRW	50% CSCRW	50% CSCRW	52% CSCRW	50% CSCRW	50% CSCRW
1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00	1.00 1.00 1.00	1.00 1.00 1.00		1.00 1.00 1.00		1.00			1.00 1.00 1.00
0.00 0.00 200 0 0 0 0 1.00	79 1.00 1.00	25 1.00 1.00	10.00 200 200 61 79 61 79 1.00	75 1.00 1.00	74 1.00 1.00	5.00 300 300 68 88 68 88 1.00	7.50 1475 1475 1018 1324 1018 1324 1.00	5.00 375 375 106 138 106 138 1.00	5.00 250 250 114 148 114 148 1.00	5.00 275 275 33 42 33 42 1.00	5.00 175 175 22 28 22 28 1.00	5.00 2375 2375 321 417 321 417 1.00
1.00 0.00 0.00 0.00 0.00	0.05	1.00 0.13 0.13 0.17 0.17	0.31 0.31 0.40	1.00 0.29 0.29 0.38 0.38	1.00 0.28 0.28 0.37 0.37	0.23 0.23 0.29	0.69 0.69 0.90	0.28 0.28 0.37	0.46 0.46 0.59	0.12 0.12 0.15	0.12 0.12 0.16	0.14 0.18
1.17 1.22	1.12 1.15	1.04 1.05	0.86	0.88 0.84	0.88 0.85	0.94	0.48	0.88	0.71	1.05	1.04	1.03

7031 - SMALL CONFERENC E	7000CC - CORRIDOR, 7000LB - ELEVATOR LOBBY	7045 - R&D	7000LA - FIRE SERVICE ACCESS LOBBY	706000 - ELEC, 70580 - ELEC	7076 - REAGENT PREP	7055 - ION DETECTION	7065 - ILLUMINA	7075 - SAMPLE PREP	7057 - BREAKING RM	7059 - GOWNING RM
7-13	7-17	7-21A, 7-21B	7-23	7-25	7-27	7-29	7-31	7-33A, 7-33B, 7-33C, 7-33D, 7-35A, 7-35B, 7-35C, 7-35D	7-37	7-39
Conference/ meeting	Corridors	Science laboratories	Corridors	Elec/mech equipment rooms	Occupiable storage rooms for dry materials	Science laboratories	Science laboratories	Science laboratories	Science laboratories	Corridors
9.05 225	1,150 0 750	1,510 20 2,950	237 0 400	300 0 1,350	129 0.258 1,000	1,132 20 1,025	1,831 4 1,650	3,326 26 7,800	248 4 1,900	218 0 800
600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00
67% CSCRW	100% CSCRW	54% CSCRW	100% CSCRW	26% CSCRW	100% CSCRW	100% CSCRW	100% CSCRW	38% CSCRW	100% CSCRW	25% CSCRW
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.00	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00	1.00	1.00	1.00
0.06 5.00 150 150 56 73 1.00 1.00 0.37 0.37	0.06 0.00 750 750 69 90 1.00 1.00 0.09 0.09	10.00 1600 1600 472 613 472 613 1.00 1.00 0.29 0.29	0.06 0.00 400 400 14 18 1.00 1.00 0.04 0.04	1.00 1.00 1.00 0.00 0.00 0.00	0.06 5.00 1000 1000 9 12 2 1.00 1.00 0.01	1.00 1.00 1.00 0.39 0.39 0.51	0.18 10.00 1650 1650 370 480 1.00 1.00 0.22 0.22	0.18 10.00 3000 3000 859 1116 1.00 1.00 0.29 0.29	0.18 10.00 1900 1900 85 110 1.00 1.00 0.04 0.04	0.06 0.00 200 200 13 17 13 17 1.00 1.00 0.07 0.07
0.49	0.12	0.38	0.05	0.00	0.01	0.51	0.29	0.37	0.06	0.09
0.79 0.73	1.07 1.10		1.13 1.17	1.17 1.22	1.16	0.77 0.70	0.94 0.93	0.88 0.84	1.12 1.16	1.10

T-qL, T-qL		85 - CLEAN AMPLE 2	7000CF - CORRIDOR	7000CG - CORRIDOR	7095 - CLEAN SAMPLE 1	7105 - SINGLE CELL PCR	7115 - BL2	7119 - GOWNING RM	7116 - ANTEROOM	7084 - RODI/GAS MANIFOLD RM	7000CB - PASSAGE	7121 - SMALL CONFERENC E	7000CJ - CORRIDOR	8009 - OFFICE, 8007 - OFFICE, 8011 - OFFICE	8013 - OFFICE
Baboratories Babo	7	7-43, 7-49	7-45	7-51		7-67	7-69	7-71	7-73	7-75	7-75	7-77		8-1	8-3
13 0			Corridors	Corridors				Corridors	Corridors		Corridors		Corridors	Office space	Office space
CSCRW CSCR		13	0	0	20	10	5	0	0	0	0	9.4	0	8	1
1.00															
10.00 0.00 0.00 10.00 10.00 10.00 0.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		10.00 1100 1100 295 383 295 383 1.00 1.00 0.27 0.27 0.35 0.35	0.00 200 200 22 28 22 28 1.00 1.00 0.11 0.11 0.14	0.00 200 200 34 44 34 41 1.00 1.00 0.17 0.17 0.22 0.22	10.00 650 650 447 581 1.00 1.00 0.69 0.69 0.89	10.00 250 250 189 246 1.00 1.00 0.76 0.76 0.98	10.00 225 225 93 121 1.00 1.00 0.41 0.41 0.54 0.54	0.00 225 225 15 19 15 19 1.00 0.06 0.06 0.08	0.00 2000 2000 5 6 5 6 1.00 1.00 0.02 0.02 0.02	0.00 100 0 0 0 1.00 1.00 1.00 0.00 0.00	0.00 300 4 5 4 5 1.00 1.00 0.01 0.01 0.02 0.02	5.00 150 150 58 76 58 76 1.00 1.00 0.39 0.39 0.51	0.00 2500 2500 39 51 39 51 1.00 1.00 0.02 0.02 0.02	5.00 275 275 69 90 1.00 1.00 0.25 0.25 0.33	5.00 100 100 18 23 1.00 1.00 0.18 0.18 0.23 0.23

04/03/13

8015 - SMALL CONFERENC E	8008 - OFFICE, 8010 - OFFICE, 8012 - OFFICE	8029 - BSP POST PCR	8014 - TISSUE CULTURE ROOM	8016 - COLD ROOM, 8018 - FREEZER	8028 - RTS ROOM	8026 - LAB DESKS	8025 - BSP PRE LAB	8039 - LAB DESKS	8037 - LAB DESKS	8035 - LAB DESKS	8033 - LAB DESKS
8-5	8-7	8-9	8-11	8-13	8-15	8-17	8-17A, 8-17B, 8-19A	8-21A	8-21B	8-21C	8-21D
Conference/ meeting	Office space	Science laboratories	Science laboratories	Storage rooms	Science laboratories	Office space	Science laboratories	Office space	Office space	Office space	Office space
223 11.15 350	394 9 525	350 8 750	252 3 1,200	181 0 60	489 5 350	232 6 400	3,160 48 6,250	210 4 250	209 8 250	186 6 250	174 6 250
50%	52%	50%	100%	100%	600.00 79%	50%	51%	60%	60%	60%	600 00
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
0.06 5.00 175 175 69 90 69	0.06 5.00 275 275 69 89	0.18 10.00 375 375 143 186 143	10.00 1200 1200 75 98 75	0.00 0.00 60 60 0		0.06 5.00 200 200 44 57 44	1363 1049	0.06 5.00 150 150 33 42 33	5.00 150 150 53 68 53	54 41	5.00 150 150 40 53 40
1.00 1.00 1.00 0.40 0.40 0.51		1.00 1.00 1.00 0.38 0.38 0.50	1.00 1.00 1.00 0.06 0.06	1.00 1.00 1.00 0.00 0.00 0.00	1.00 1.00 1.00 0.50	1.00 1.00 1.00 0.22 0.22 0.29 0.29	1.00 1.00 1.00 0.33 0.33	1.00 1.00 1.00	1.00 1.00 1.00 0.35 0.35	1.00 1.00 1.00 0.27 0.27 0.36	1.00 1.00 1.00 0.27 0.27 0.35
0.77 0.70	0.92 0.89	0.79	1.10	1.17 1.22	0.67	0.95 0.93	0.84	0.95 0.93	0.82	0.89	0.90

8040 - MEN, 8044 - WOMEN, 8000LB - ELEVATE, LOBBY, 8000CC - CORRIDOR, 8000LA - FIRE SERVICE ACCESS	8061 - PROJECT MANAGERS OFFICE	8059 - LAB MANAGERS	8063 - LAB DESKS	8065 - POST PCR GAP LAB		8062 - SMALL CONFERENC E	8064 - STORAGE	8070, 8066 COLD ROOM, 8068, 8072 FREEZER	8075 - PRE PCR WHOLE GENOME	8085 - PRE PCR EXPRESSION	8095 - PRE PCR LOWPLEX	8097 - OFFICE	8099 - OFFICE, 8103 - OFFICE	8111 - MEETING	8086 - LAB SUPPORT	8102 - COPY
8-23, 8-61	8-25	8-27	8-29A, 8-29B	8-31A, 8-31B, 8-31C, 8-31D, 8-33B, 8-33C	8-35	8-37	8-39	8-41	8-43A, 8-43B	8-45	8-47A, 8-47B	8-49	8-51	8-51	8-53	8-55
Corridors	Office space	Office space	Office space	Science laboratories	Elec/mech equipment rooms	Conference/ meeting	Storage rooms	Storage rooms	Science laboratories	Science laboratories	Science laboratories	Office space	Office space	Conference/ meeting	Storage rooms	Corridors
1,768	242	389 6	738 5	4,451 5 51	286 0	229 11.45	162 0		746 12	4	957 18	195 4	260 6	122 6.1	133	120 0
1,600	300	550	1,000	9,325	1,350	400	300	120	1,600	850	1,950	300	400	200	250	250
100%	50%	50%	50%		26%	50%	50%	100%	42%	47%	45%	50%	50%	50%	50%	60%
1.00	CSCRW 1.00	CSCRW 1.00	1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	1.00	CSCRW 1.00	1.00	CSCRW 1.00	1.00	1.00
1.00	1.00				1.00	1.00	1.00		1.00			1.00				
0.06 0.00 1600 1600	5.00 150 150 30	5.00 275 275 53	5.00 500 500 69	10.00 4050 4050 1311	0.00 350 350 0	5.00 200 200 71	0.00 0.00 150 150	0.00 120 120 0	10.00 675 675 254	10.00 400 400 96	10.00 875 875 352	150 32	5.00 200 200 46	5.00 100 100 38	0.00 125 125 0	0.00 150 150 7
138 106 138 1.00 1.00 1.00 0.07 0.07	30 38 1.00 1.00 1.00 0.20 0.20	53 69 1.00 1.00 1.00 0.19 0.19	69 90 1.00 1.00 1.00 0.14 0.14	1311 1705 1.00 1.00 1.00 1.00 1.00 1.03 1.03 1.03	1.00 1.00 1.00 0.00 0.00 0.00	71 92 1.00 1.00 1.00 0.35 0.35	0 0 1.00 1.00 1.00 0.00 0.00	0 0 1.00 1.00 1.00 0.00 0.00	254 331 1.00 1.00 1.00 0.38 0.38	96 125 1.00 1.00 1.00 0.24 0.24	352 458 1.00 1.00 1.00 0.40 0.40	41 1.00 1.00 1.00 0.21 0.21 0.27	46 59 1.00 1.00 1.00 0.23 0.23 0.30	38 49 1.00 1.00 1.00 0.38 0.38	0 0 1.00 1.00 1.00 0.00 0.00	7 9 1.00 1.00 1.00 0.05 0.05
0.09							0.00									
1.13							1.22					0.94				

8084 - THERMO CYCLER, 8082 - CRYOGEN MANIFOLD, 8080 - 80 FREEZER, 8078 - 80 FREEZER	8001 - BREAK AREA	9009 - OFFICE, 9007 - OFFICE, 9011 - OFFICE	9013 - OFFICE	9017 - OFFICE, 9015 - OFFICE	9010 - OFFICE	9012 - BREAKOUT	9022 - OFFICE, 9008 - OFFICE	9021 - OFFICE, 9019 - OFFICE	9014 - OFFICE, 9016 - OFFICE, 9018 - OFFICE	9026 - OFFICE, 9024 - OFFICE, 9020 - OFFICE	9040 - MEN, 9044 - WOMEN, 9000LB - ELEVATOR LOBBY, 9000CA - CORRIDOR, 9000LA - FIRE SERVICE ACCESS LOBBY
8-57	8-59	9-1	9-3	9-5	9-7	9-9	9-11	9-13	9-15	9-17	9-19, 9-97
Storage rooms	Break rooms	Office space	Office space	Office space	Office space	Corridors	Office space	Office space	Office space	Office space	Corridors
1,251	910	390	276	308	109	138	336	260	327	540	1,754
0	22.75	7		6	1	0		5	3	12	0
800	1,400	525		400	200	200		350	450	675	1,600
600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00
100%	50%	48%	50%	50%	50%	50%	50%	50%	50%	48%	100%
CSCRW	CSCRW	CSCRW	CSCRW	CSCRW	CSCRW	CSCRW	CSCRW	CSCRW	CSCRW	CSCRW	CSCRW
1.00	1.00					1.00		1.00	1.00	1.00	1.00
1.00	1.00								1.00		1.00
0.00 0.00 800 800 0 0 1.00 1.00 0.00 0.0	5.00 700 700 168 219 168 219 1.00 1.00 0.24 0.24	5.00 250 250 58 76 58 76 1.00 1.00 0.23 0.23	5.00 150 22 28 22 28 1.00 1.00 0.14 0.14	5.00 200 200 48 63 48 63 1.00 1.00 0.24 0.24	5.00 100 100 12 15 15 1.00 1.00 0.12 0.12	0.00 100 100 8 111 8 111 1.00 1.00 0.08 0.08	5.00 225 225 55 72 55 72 1.00 1.00 0.25 0.25	5.00 175 175 41 53 41 53 1.00 1.00 0.23 0.23	0.06 5.00 225 225 35 45 1.00 1.00 0.15 0.15	5.00 325 325 92 120 92 120 1.00 1.00 0.28 0.28	0.06 0.00 1600 1050 137 105 137 1.00 1.00 0.07 0.07 0.09
1.17	0.93	0.93	1.02	0.92	1.05	1.08	0.92	0.93	1.01	0.88	1.10
1.17											1.10
1.22		- 0.91	1.00		1.07			0.32	1.02		1.10

9-21 9-23 9-25 9-27 9-29 9-31	9-33 Office space Of 270 6 400 50% CSCRW 1.00 1.00	9-35 Office space 260 6 350 50% CSCRW 1.00	Science laboratories 484 5 2,500 100% CSCRW	9-41 Office space 188 0.94 450
Solution	270 6 400 50% CSCRW 1.00	260 6 350 50% CSCRW 1.00	484 5 2,500	188 0.94 450
6 6 6 21.65 6 2 1 450 400 1,300 1,200 350 350 50% 50% 50% 50% 50% 50% 50% CSCRW CS	50% CSCRW 1.00	50% CSCRW 1.00	5 2,500 600.00	0.94 450
50% 50% 50% 50% 50% 50% 50% 50% CSCRW CSCR	50% CSCRW 1.00	50% CSCRW 1.00	600.00	600.00
CSCRW	1.00	1.00		50%
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00	1.00		CSCRW
			1.00	1.00
		1.00	1.00	1.00
0.06 0.06 0.06 0.06 0.06 0.06 5.00 5.00 5.00 5.00 5.00 5.00 225 200 650 600 175 175 225 200 650 600 175 175 51 49 134 49 26 20 67 64 174 64 34 26 51 49 134 49 26 20 67 64 174 64 34 26 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.20 1.20 1.00 1.00 1.00 1.00 1.00 1.20 1.21 </th <th>0.06 5.00 200 200 46 60 1.00 1.00 1.00 0.23 0.23 0.30</th> <th>0.06 5.00 175 175 46 59 1.00 1.00 0.26 0.26</th> <th></th> <th>0.06 5.00 225 225 16 21 16 21 1.00 1.00 0.07 0.07 0.09</th>	0.06 5.00 200 200 46 60 1.00 1.00 1.00 0.23 0.23 0.30	0.06 5.00 175 175 46 59 1.00 1.00 0.26 0.26		0.06 5.00 225 225 16 21 16 21 1.00 1.00 0.07 0.07 0.09
0.94	0.94 0.92	0.91 0.88	1.11 1.15	1.10 1.12

9062 - EPHYS ROOM	9000CJ - CORRIDOR	9060E2 - ELEC, 90580 - ELEC	9070 - BL2 + TISSUE CULTURE ROOM	9064 - H-2 STORAGE	9068 - COLD ROOM	9083 - LAB DESKS, 9081 - LAB DESKS, 9079 - LAB DESKS	9087 - LAB DESKS, 9085 - LAB DESKS	9089 - LAB DESKS	9075 - LAB	9000CL - CORRIDOR	9093 - OFFICE	9099 - OFFICE, 9095 - OFFICE, 9097 - OFFICE
9-43	9-45	9-47	9-49	9-51	9-53	9-55	9-57A	9-57B	9-59A, 9-59B, 9-59C, 9-61A, 9-61B, 9-61C, 9-63A, 9-63B, 9-63C	9-65	9-67	9-69
Corridors	Corridors	Elec/mech equipment rooms	Science laboratories	Storage rooms	Storage rooms	Office space	Office space	Office space	Science laboratories	Corridors	Office space	Office space
180	197	281	421	88 0	118 0	460 15	432 10	432	6,295 110	508	208	399
600	100	1,350	2,600	250	35	600	400	200	12,700	250	250	550
600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00
50% CSCRW	100% CSCRW	26% CSCRW	100% CSCRW	60% CSCRW	100% CSCRW	75% CSCRW	75% CSCRW	75% CSCRW	44% CSCRW	100% CSCRW	50% CSCRW	50% CSCRW
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
0.06 0.00 300 300 11	100 12 15	0.00 350 350 0 0	10.00 2600 2600 116	0.00 0.00 150 150 0	0.00 0.00 35 35 0	103 133	0.06 5.00 300 300 76 99	0.06 5.00 150 150 41 53	10.00 5625 5625 2233 2903	250 250 30 40	125 17 23	5.00 275 275 59 77
11 14	12 15	0	116 151	0	0		76 99	41 53	2233	30	17	59
1.00 1.00	1.00	1.00	1.00	1.00 1.00	1.00 1.00	1.00	1.00 1.00	1.00 1.00	1.00	1.00	1.00	1.00
1.00 0.04	1.00 0.12	0.00	0.04	1.00	1.00		1.00 0.25	1.00 0.27	0.40	0.12	0.14	0.21
0.04	0.12 0.15	0.00	0.06	0.00	0.00	0.30	0.25 0.33	0.35	0.52	0.16	0.18	0.28
0.05	0.15			0.00	0.00	0.30	0.33					
1.13 1.17	1.05 1.06			1.17 1.22	1.17 1.22		0.91 0.89	0.89 0.86				

9101 - BREAK	9105 - OFFICE	9090 - FREEZER ROOM	9086 - RADIO ISOTOPE RM	9084 - DARK ROOM	9080 - STORAGE	9088 - LAB MECH RM	9000CK - CORRIDOR	9082 - HOLDING	9078 - PROCEDURE ROOM
9-71	9-73	9-75	9-77	9-79	9-79	9-81	9-83	9-85	9-87
Break rooms	Office space	Storage rooms	Science laboratories	Science laboratories	Storage rooms	Storage rooms	Corridors	Storage rooms	Medical Procedure
270 6.75 350	148 1 200	291 0 150	121 2 650	110 1 175	92 0 100	92 0 775	326 0 300	86 0 250	224 4.48 500
50% CSCRW 1.00	50% CSCRW 1.00	100% CSCRW 1.00	100% CSCRW 1.00	100% CSCRW 1.00	100% CSCRW 1.00	13% CSCRW 1.00	100% CSCRW 1.00	100% CSCRW 1.00	80% CSCRW 1.00
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
0.06 5.00 175 175 50	0.06 5.00 100 100	0.00 0.00 150 150	0.18 10.00 650 650	0.18 10.00 175 175 30	0.00 0.00 100 100	0.00 0.00 100 100	0.06 0.00 300 300 20	0.00 0.00 250 250	400
65 50 65 1.00	18 14 18 1.00	0 0 0 1.00	54 42 54 1.00	39 30 39 1,00	0 0 0 1,00	0 0 0	25 20 25 1.00	0 0 0 1.00	87 67 87
1.00 1.00 0.29 0.29 0.37 0.37	1.00 1.00 0.14 0.14 0.18 0.18	1.00 1.00 0.00 0.00 0.00 0.00	1.00 1.00 0.06 0.06 0.08 0.08	1.00 1.00 0.17 0.17 0.22 0.22	1.00 1.00 0.00 0.00 0.00 0.00	1.00 1.00 0.00 0.00 0.00 0.00	1.00 1.00 0.07 0.07 0.08 0.08	1.00 1.00 0.00 0.00 0.00 0.00	1.00 1.00 0.17 0.17 0.22
0.88 0.85	1.03 1.04	1.17 1.22	1.10 1.13	1.00 1.00	1.17 1.22	1.17 1.22	1.10 1.13	1.17 1.22	1.00 1.00

9076 - TISSUE CULTURE ROOM	9108 - COPY	9107 - SMALL CONFERENC E	9001 - BREAK AREA	10011 - OFFICE, 10009 - OFFICE, 10007 - OFFICE	10013 - OFFICE	10017 - OFFICE, 10015 - OFFICE	10010 - OFFICE	10012 - BREAKOUT	10022 - OFFICE, 10008 - OFFICE	10021 - OFFICE, 10019 - OFFICE	10014 - OFFICE, 10016 - OFFICE, 10018 - OFFICE	10026 - OFFICE, 10024 - OFFICE, 10020 - OFFICE	10023 - OFFICE, 10029 - OFFICE
9-89	9-91	9-93	9-95	10-1	10-3	10-5	10-7	10-7	10-9	10-11	10-13	10-15	10-17
Science laboratories	Corridors	Conference/ meeting	Break rooms	Office space	Office space	Office space	Office space	Break rooms	Office space	Office space	Office space	Office space	Office space
280	102	219 10.95	1,028	387	257	297	128	138	313	262	390	477	353 4
1,700	175		1,200	525	300	350	175		400	350	525		500
600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00
100% CSCRW 1.00	100% CSCRW 1.00	50% CSCRW 1.00	50% CSCRW 1.00	48% CSCRW 1.00	50% CSCRW 1.00	50% CSCRW 1.00	57% CSCRW 1.00	50% CSCRW 1.00	50% CSCRW 1.00	50% CSCRW 1.00	48% CSCRW 1.00	50% CSCRW 1.00	50% CSCRW 1.00
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
0.18 10.00 1700 80 105 80 105 1.00 1.00 0.05	8 6 8 1.00 1.00 1.00 0.03 0.03	5.00 150 150 68 88 68 1.00 1.00 1.00 0.45	1.00 1.00 1.00 0.32 0.32	250 250 63 82 63 82 1.00 1.00 1.00	0.06 5.00 150 20 27 20 27 1.00 1.00 0.14	0.06 5.00 175 175 48 62 48 62 1.00 1.00 0.27	5.00 100 100 23 29 23 29 1.00 1.00 0.23	5.00 100 100 23 30 23 30 1.00 1.00 0.23 0.23	200 200 49 63 49 63 1.00 1.00 0.24	53 1.00 1.00 1.00 0.23 0.23	5.00 250 250 88 89 1.00 1.00 1.00 0.27	5.00 300 300 74 96 74 96 1.00 1.00 0.25	0.06 5.00 250 250 41 54 41 54 1.00 1.00 0.16
0.06 0.06			0.41 0.41	0.33 0.33	0.18 0.18	0.36 0.36			0.32 0.32	0.30 0.30			0.21 0.21
1.12 1.16			0.85 0.80		1.03 1.04	0.89 0.86			0.92 0.90	0.93 0.91			1.00 1.00

10028 - OFFICE, 10030 - OFFICE	10040 - MEN, 10044 - WOMEN, 10000LB - ELEVATOR LOBBY, 10000CA - CORRIDOR, 10000LA - FIRE SERVICE ACCESS	10031 - LARGE CONFERENC E	10032 - SCIENTIFIC LIVING ROOM	10057 - OFFICE, 10055 - OFFICE	10053 - OFFICE	10047 - OFFICE, 10049 - OFFICE	10048 - OFFICE, 10050 - OFFICE	1007780 FREEZER ROOM	10079 - TISSUE CULTURE	10066 - COLD ROOM	10062 - H-2 STORAGE	10000CJ - CORRIDOR	10064 - EPHYS ROOM	10068 - MICROSCOP Y/ IMAGING
10-19	LOBBY 10-21, 10-73	10-23	10-25	10-27	10-29	10-31	10-33	10-35	10-37	10-39	10-41	10-43	10-45	10-47
Office space	Corridors	meeting		•		Office space		Storage rooms	Science laboratories	Storage rooms	Storage rooms	Corridors	Corridors	Office space
314 6 400	2,250 0 1,600	433 21.65 1,200	323 6 1,200	271 3 350		269 5 400	260 6 350	464 0 450	207 2 950	100 0 35	92 0 150	197 0 100	188 0 400	184 0.92 350
600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.000	600.00	600.00	600.00	600.00
50% CSCRW 1.00	100% CSCRW 1.00	50% CSCRW 1.00	50% CSCRW 1.00	50% CSCRW 1.00	50% CSCRW 1.00	50% CSCRW 1.00	50% CSCRW 1.00	100% CSCRW 1.00	100% CSCRW 1.00	100% CSCRW 1.00	100% CSCRW 1.00	100% CSCRW 1.00	50% CSCRW 1.00	50% CSCRW 1.00
1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00		1.00	
0.06 5.00 200 200 49 63 1.00 1.00 0.24 0.24	176 1.00 1.00 1.00 0.08 0.08 0.11	0.06 5.00 600 600 134 174 1.00 1.00 0.22 0.22 0.29	600 600 49 64 49 64 1.00 1.00 0.08 0.08	5.00 175 175 31 41 31 41 1.00 1.00	5.00 175 175 20 26 20 26 1.00 1.00 0.11 0.11	5.00 200 200 41 53 41 53 1.00 1.00 0.21 0.21	175 175 46 59 46 59 1.00	0.00 0.00 450 450 0 0 1.00 1.00 0.00 0.00	10.00 950 950 57 74 57 74 1.00 1.00 0.06 0.06	0.00 0.00 35 35 0 0 0 1.00 1.00 0.00 0.00	0.00 0.00 150 150 0 0 1.00 1.00 0.00 0.0	0.00 100 100 12 15 12 15 1.00 1.00 0.12 0.12	0.06 0.00 200 211 15 11 15 1.00 1.00 0.06 0.07	5.00 175 175 16 20 16 20 1.00 1.00 0.09 0.09
0.92 0.90	1.08	0.94 0.93	1.08		1.05	0.96	0.91	1.17 1.22	1.11	1.17 1.22	1.17 1.22	1.05	1.11 1.14	1.08

10068 - MICROSCOP Y/ IMAGING	10058E1 - ELEC, 10060E2 - ELEC	10070 - MACHINE SHOP/ELECT RONICS	10083 - LAB DESKS, 10081 - LAB DESKS	10087 - LAB DESKS, 10085 - LAB DESKS, 10089 - LAB DESKS	10075 - LAB	10093 - LAB DESKS, 10095 - LAB DESKS, 10097 - LAB DESKS	10099 - LAB DESKS, 10101 - LAB DESKS, 10103 - LAB DESKS	10105 - OFFICE	10107 - SMALL CONFERENC E	10090 - MICROSCOP Y/ IMAGING	10000CK - CORRIDOR	10086 - CELL SORTER	10084 - HOLDING	10082 - PROCEDURE ROOM
10-47	10-49	10-51	10-55	10-57A, 10- 57B	10-59A, 10- 59B, 10-59C, 10-61A, 10- 61B, 10-61C, 10-61D, 10- 63A, 10-63B, 10-63C,	10-65A, 10- 65B	10-67	10-69A	10-69B	10-79	10-83	10-85	10-87	10-89
Office space	Elec/mech equipment rooms	Storage rooms	Office space	Office space	Science laboratories	Office space	Office space	Office space	Conference/ meeting	Office space	Corridors	Science laboratories	Storage rooms	Medical Procedure
184 0.92 350	286 0 1,350	115 0 300	307 10 400	432 13 600	6,705 42 14,400	391 13 600	415 15 600	140 3 200	205 10.25 275	120 0.6 250	319 0 175	113 1 300	86 0 300	140 2.8 950
600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00
50% CSCRW 1.00	26% CSCRW 1.00	50% CSCRW 1.00	75% CSCRW 1.00	75% CSCRW 1.00	42% CSCRW 1.00	75% CSCRW 1.00	75% CSCRW 1.00	75% CSCRW 1.00	55% CSCRW 1.00	50% CSCRW 1.00	100% CSCRW 1.00	50% CSCRW 1.00	50% CSCRW 1.00	50% CSCRW 1.00
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
0.06 5.00 175 175 16 20 16 20 1.00 1.00	0.00 350 350 0 0 0 1.00 1.00 1.00	0.00 150 150 0 0 0 1.00 1.00	5.00 300 300 68 89 68 89 1.00 1.00	5.00 450 450 91 118 91 1.00 1.00	10.00 6100 6100 1627 2115 1627 2115 1.00 1.00	5.00 450 450 88 115 88 115 1.00 1.00	5.00 450 450 100 130 100 130 1.00 1.00 1.00	5.00 150 150 23 30 23 1.00 1.00 1.00	0.06 5.00 150 150 64 83 1.00 1.00	5.00 125 125 10 10 13 10 1.00 1.00 0.08	0.06 0.00 175 175 19 25 19 25 1.00 1.00	10.00 150 150 30 39 30 1.00 1.00	0.00 0.00 150 0 0 0 1.00 1.00 0.00	0.00 15.00 475 475 42 55 42 55 1.00 1.00 1.00 0.09
0.09 0.12 0.12	0.00	0.00 0.00 0.00	0.30	0.20 0.26 0.26	0.35	0.20 0.26 0.26	0.29	0.20	0.42 0.55 0.55	0.11	0.11 0.14 0.14	0.20 0.26 0.26	0.00 0.00 0.00	0.09 0.11 0.11
1.08 1.10		1.17 1.22				0.97 0.96		1.01 1.01	0.74 0.67		1.06 1.07	0.96 0.95	1.17 1.22	1.08 1.10

10108 - COPY	10001 - BREAK AREA	11007 - OFFICE, 11009 - OFFICE, 11011 - OFFICE	11000CB - CORRIDOR	11008 - OFFICE, 11010 - OFFICE, 11012 - OFFICE	11013 - OFFICE	11017 - OFFICE, 11019 - OFFICE, 11021 - OFFICE, 11023 - OFFICE	11014 - OFFICE, 11022 - OFFICE	11027 - OFFICE, 11029 - OFFICE	11000CE - CORRIDOR	11024 - OFFICE, 11026 - OFFICE, 11028 - OFFICE, 11030 - OFFICE	11031 - LARGE CONFERENC E	SCIENTIFIC LIVING ROOM	11048 - OFFICE, 11050 - OFFICE	11055 - OFFICE, 11057 - OFFICE
10-101	10-105	11-1	11-3	11-5	11-7	11-9	11-11	11-13	11-15	11-17	11-19	11-21	11-23	11-25
Corridors	Break rooms		Corridors	Office space					Corridors	Office space	meeting		Office space	
120 0 175	872 21.8 1,200	426 8 550	171 0 300	327 5 425	172 1 225	508 10 675	333 7 425	359 2 450	171 0 300	652 11 700	433 21.65 450	361 6 450	260 6 300	277 3 325
100% CSCRW 1.00	50% CSCRW 1.00	41% CSCRW 1.00	100% CSCRW 1.00	47% CSCRW 1.00	44% CSCRW 1.00	44% CSCRW 1.00	47% CSCRW 1.00	50% CSCRW 1.00	100% CSCRW 1.00	50% CSCRW 1.00	50% CSCRW 1.00	50% CSCRW 1.00	50% CSCRW 1.00	46% CSCRW 1.00
1.00				1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00	1.00	1.00			1.00	1.00
0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
0.00 175 175 7	5.00 600 600	5.00 225 225	0.00 300 300	5.00 200 200	5.00 100 100 15	5.00 300 300 80	5.00 200 200 55	5.00 225 225 32	0.00 300 300 10	5.00 350 350 94	5.00 225 225	5.00 225 225	5.00 150 150	5.00 150 150 32
9 7 9 1.00	210 161 210	85 66 85	13 10 13	58 45 58	20 15 20 1.00	105 80 105 1.00	71 55 71 1.00	41 32 41 1.00	13 10 13 1.00	122 94 122	174 134 174	67 52 67	59 46 59	41 32 41 1.00
1.00 1.00 1.00 0.04 0.04	1.00 1.00 0.27	1.00 1.00 0.29	1.00 1.00 0.03	1.00 1.00 0.22	1.00 1.00 0.15	1.00 1.00 0.27	1.00 1.00 0.27	1.00 1.00 1.00 0.14 0.14	1.00 1.00 0.03	1.00 1.00 0.27	1.00 1.00 0.60	1.00 1.00 0.23	1.00 1.00 0.30	1.00 1.00 0.21
0.05 0.05 1.13	0.35 0.35	0.38 0.38	0.04 0.04	0.29 0.29	0.20 0.20		0.36 0.36	0.18 0.18 1.03	0.04 0.04	0.35 0.35	0.78 0.78	0.30 0.30	0.40 0.40	0.27 0.27
1.16				0.93			0.86	1.03	1.17	0.87				0.94

11053 - OFFICE	11047 - OFFICE, 11049 - OFFICE	11000CA - CORRIDOR, 11000LB - ELEVATOR LOBBY, 11040 - MEN, 11044 - WOMEN, 11000LA - FIRE SERVICE ACCESS LOBBY	11081 - MEDIUM CONFERENC E	11083 - OFFICE, 11085 - OFFICE	11074 - OFFICE, 11078 - OFFICE, 11084 - OFFICE	11062 - MEETING	11064 - OFFICE, 11082 - OFFICE	110580 - ELEC, 1106000 - ELEC	11087 - OFFICE, 11089 - OFFICE, 11091 - OFFICE	11093 - OFFICE	11090 - OFFICE, 11098 - OFFICE, 11102 - OFFICE	11000CN - CORRIDOR	11066 - FILES	11068 - OFFICE, 11070 - OFFICE, 11072 - OFFICE
11-27	11-29	11-31, 11-81	11-33	11-35	11-37	11-39	11-39	11-41	11-43	11-45	11-47	11-49	11-57	11-57
Office space	Office space	Corridors	Conference/ meeting	Office space	Office space	Conference/ meeting	Office space	Elec/mech equipment rooms	Office space	Office space	Office space	Corridors	Storage rooms	Office space
262 1	262 2	2,202	250 12.5	274 5	361 6	126 6.3	259 6	283		180	391 9	861	130	380 8
325	350 600.00	1,600	600.00	350 600 00	450 600.00	150 600.00	300	1,350 600.00	525	225 600.00	450 600.00	600.00	150 600.00	450
46% CSCRW	43% CSCRW	100% CSCRW	50% CSCRW	43% CSCRW	50% CSCRW	50% CSCRW	50% CSCRW	26% CSCRW	48% CSCRW	44% CSCRW	50% CSCRW	100% CSCRW	50% CSCRW	50% CSCRW
1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00		1.00 1.00 1.00		1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00		1.00 1.00 1.00		1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00
0.06 5.00 150 150 21 27	0.06 5.00 150 150 26 33	0.06 0.00 1600 1600 132 172	5.00 250 250 78 101	0.06 5.00 150 150 41 54	5.00 225 225 52 67	0.06 5.00 75 75 39 51	0.06 5.00 150 150 46 59	0.00 0.00 350 350 0	5.00 250 250 65 84	0.06 5.00 100 100 16 21	5.00 225 225 68 89	0.06 0.00 400 400 52 67	0.00 0.00 75 75 0	0.06 5.00 225 225 63 82
21 27 1.00 1.00 1.00 0.14 0.14	26 33 1.00 1.00 1.00 0.17 0.17	172 1.00 1.00 1.00 0.08 0.08	101 1.00 1.00 1.00 0.31	54 1.00	67 1.00 1.00 1.00 0.23	39 51 1.00 1.00 1.00 0.52 0.52	46 59 1.00 1.00 1.00 0.30 0.30	0 0 1.00 1.00 1.00 0.00 0.00	84 1.00 1.00 1.00 0.26 0.26	21 1.00 1.00 1.00 0.16 0.16	89 1.00 1.00 1.00 0.30 0.30	52 67 1.00 1.00 1.00 0.13 0.13	0 0 1.00 1.00 1.00 0.00 0.00	63 82 1.00 1.00 1.00 0.28 0.28
0.18 0.18	0.22 0.22	0.11	0.40		0.30	0.68 0.68	0.39 0.39	0.00	0.34	0.21 0.21	0.40	0.17 0.17	0.00	0.36 0.36
1.03 1.04	1.00 0.99	1.08 1.11		0.89 0.86		0.65 0.54	0.86 0.82	1.17 1.22		1.01 1.01	0.86 0.82	1.04 1.05	1.17 1.22	0.89 0.85

11095 - OFFICE, 11097 - OFFICE, 11103 - OFFICE	11076 - OFFICE, 11080 - OFFICE, 11088 - OFFICE	11104 - OFFICE, 11106 - OFFICE, 11108 - OFFICE, 11110 - OFFICE	11105 - OFFICE, 11107 - OFFICE, 11109 - OFFICE, 11111 - OFFICE	11000CS - CORRIDOR	11125 - OFFICE, 11127 - OFFICE, 11129 - OFFICE	11112 - NETWORK OPERATIONS CENTER	11130 - WORKSTATI ONS	11133 - OFFICE	11135 - OFFICE, 11137 - OFFICE, 11139 - OFFICE	11142 - OFFICE, 11144 - OFFICE	11122 - IT WORKROOM	11141 - OFFICE, 11143 - OFFICE, 11145 - OFFICE, 11147 - OFFICE	11001 - BREAK AREA	11116 - OFFICE, 11120 - OFFICE	11000CL - CORRIDOR	11148 - COPY	11016 - FILES	11018 - MEETING
11-51	11-53	11-55	11-59	11-61	11-63	11-65	11-67	11-69	11-71	11-73	11-75	11-77	11-79	11-83	11-85	11-87	11-89	11-89
Office space	Office space	Office space	Office space	Corridors	Office space	Office space	Office space	Office space	Office space	Office space	Office space	Office space	Break rooms	Office space	Corridors	Corridors	Storage rooms	Conference/ meeting
418	391 9	520 12		629	389	309	571 12	180	412 8	260	271			296	955 0	92	158	158
575	450	600		400	475		600	225	450	300	900			300	500	250	200	300
600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00
48% CSCRW	50% CSCRW	50% CSCRW	50% CSCRW	100% CSCRW	47% CSCRW	50% CSCRW	50% CSCRW	44% CSCRW	50% CSCRW	50% CSCRW	56% CSCRW	50% CSCRW	CSCRW	50% CSCRW	100% CSCRW	50% CSCRW	50% CSCRW	50% CSCRW
1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00		1.00
1.00	1.00	1.00			1.00		1.00	1.00	1.00	1.00						1.00		1.00
0.06	0.06	0.06			0.06		0.06	0.06	0.06									
5.00 275 275	5.00 225 225	5.00 300 300	300	400	5.00 225 225	175	5.00 300 300	5.00 100 100	5.00 225 225	150	500	300	600	150	500	125	100	150
45 59	68 89	91	80	38	53 69	44		16 21	65 84	41	36	83	168	43	57	6	0	29
45 59	68 89	91 119	80	38	53 69	44	94	16 21	65 84	41	36	83	168	43	57	6	0	29
1.00 1.00	1.00 1.00	1.00 1.00	1.00	1.00	1.00 1.00	1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00
1.00 0.16	1.00 0.30	1.00 0.30	0.27	0.09	1.00 0.24	0.25	1.00 0.31	1.00 0.16	1.00 0.29	0.27	0.07	0.28	0.28	0.29	0.11	0.04	0.00	1.00 0.20
0.16	0.30	0.40	0.34	0.12	0.24	0.32		0.16 0.21	0.37	0.35	0.09	0.36	0.36	0.37	0.15	0.06	0.00	0.26
0.21	0.40	0.40			0.31		0.41	0.21	0.37									0.26
1.00	0.82				0.91		0.81	1.01	0.84									
				onev									Fir			Τ.	1/03/	

M1000LA - FIRE SERVICE ACCESS LOBBY,	new zone	M1007 - MECHANICAL	M2000LA - FIRE SERVICE ACCESS LOBBY	M3000LA - FIRE SERVICE ACCESS LOBBY			
M1000LB - ELEVATOR LOBBY							
M1-1	M1-2	M1-3, M1-4	M2-1	M3-1	Totals/av	erages	
Corridors	Elec/mech equipment rooms	Elec/mech equipment rooms	Corridors	Corridors			
590	553	1,012	230	223	176,714		
0 800	500	0 2,000	0 400	0 400	2184.582 321,250	total cfm	
600.00	600.00	500.00	600.00	500.00	1.00	average	
100%	100%	100%	100%	100%	63%	average	
CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00		average	Primary airflov
1.00	1.00		1.00		Er for ITU		182815 57%
1.00	1.00	1.00	1.00	1.00	Ep for ITU	/DFDD/TF	
0.06 0.00 800 800 35 46 35 46 1.00 1.00 0.04 0.04	1.00 1.00 0.00 0.00 0.00 0.00	0.00 2000 0 0 0 1.00 1.00 0.00 0.00	0.06 0.00 400 400 14 18 14 18 1.00 1.00 0.03 0.03 0.04 0.04	0.06 0.00 400 400 13 17 13 17 1.00 1.00 0.03 0.03 0.04	183455 183455 30522 39678 30522 39678 0.76 0.76 0.98		<i>Zpz</i> Zd30
1.12 1.16	1.17 1.22		1.13 1.17	1.13 1.17			

AHU-5 OA% ANALYSIS

System Tag/Na	ime:	Delete Zone	*****IMP	75 Ames AHU-5 *****IMPORTANT NOTES***** Enable Macros Macros - Secuirty Warning -> Options -> Enable Content								
	dition Description: om pull-down list)	Add Zone	Macros -	Secuirt	y W	arning -> Opti	ons ->	Enable Con	tent			
Onits (select in	om pan-down ns.)		11-		Т	w /o diversity			w/dive	ersity		
Inputs for Syste			Name	Units		System		Diversity	Syst			
	area served by system lation of area served by system		As Ps	sf P		20007.01 81	D	100%		81		
	gn primary supply fan airflow rate		Vpsd	cfm		53,910	D	100%	5	3,910		
OA re	eq'd per unit area for system (We	eighted average)	Ras	cfm/sf		0.09						
	eq'd per person for system area system have Outdoor Air Econo		Rps	cfm/p	from	9.8 pull-down list				No		
	oor air intake provided for sys		OA	cfm		60,000						
	ntially Critical zones											
	Show	Values per Zone										
Zone	Name	-										
			Zono title			italia far aritiaa		2(2)				
			Zone inte	turns pt	IIPIE	e italic for critica	1 20116	3(S)				
Zone	Tag											
Occu	pancy Category											
				Select	fron	n pull-down list:						
Floor	Area of zone		Az	sf		l'						
	gn population of zone	the lead and a 1 a	Pz	P	(de	efault value liste	d; may	y be overridder	1)			
	gn total supply to zone (primary p tion Terminal Unit, Dual Fan Dua		Vdzd	cfm Select	from	n pull-down list o	r leav	e blank if N/Δ·				
	of local recirc. air that is represe		Er	Select		. pan-aown list (reav	S DIGITE II IN/A:				
Inputs for Oper	rating Condition Analyzed											
Perce	ent of total design airflow rate at		Ds	%	fuer ::	null down the				80%		
	stribution type at conditioned and air distribution effectiveness at c		Ez	Select	ron	pull-down list:		Show code	s for Ez			
	ary air fraction of supply air at co		Ep							_		
	ems with Outdoor Air Econom											
	oor air Temperature		Toa	Deg F						100		
	n Air Temperature		Tp	Deg F					-			
	ly Fan Heat Gain		dTsf	Deg F					1			
Retur	n Fan Heat Gain		dTrf	Deg F								
	mum ASHRAE 62.1 Ventilation em Ventilation Efficiency	Rate Procedure (EQp1)	Ev							0.83		
	oor air intake required for sys	tem (EQp1)	Vot	cfm						3,191		
	oor air per unit floor area	(======================================	Vot/As	cfm/sf						0.16		
Outdo	oor air per person served by syst		Vot/Ps	cfm/p						39.5		
										6%		
	oor air as a % of design primary	supply air	Ypd	%								
Outdo			•	%								
Outdo	Increase beyond ASHRAE 62. em Ventilation Efficiency with 30°	1 Ventilation Rate Procedu	•	%						0.78		
Outdo	Increase beyond ASHRAE 62. em Ventilation Efficiency with 30° oor air intake required for system	1 Ventilation Rate Procedu % increase (EQc2) with 30% increase (EQc2)	re (EQc2) Evz30 Vot30	% cfm						1,421		
Outdo	Increase beyond ASHRAE 62 em Ventilation Efficiency with 30° oor air intake required for system oor air per unit floor area for syste	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2)	re (EQc2) Evz30 Vot30 Vot30/As	cfm s cfm/sf						4,421 0.22		
Outdo Results of 30% Syste Outdo Outdo Outdo	Increase beyond ASHRAE 62.: am Ventilation Efficiency with 30° oor air intake required for system oor air per unit floor area for syste oor air per person served by syst	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2	Vot30/As Vot30/As Vot30/Ps	cfm s cfm/sf					4	4,421 0.22 54.7		
Outdo Results of 30% Syste Outdo Outdo Outdo	Increase beyond ASHRAE 62 em Ventilation Efficiency with 30° oor air intake required for system oor air per unit floor area for syste	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2	re (EQc2) Evz30 Vot30 Vot30/As	cfm s cfm/sf s cfm/p					,	1,421		
Results of 30% Syste Outde Outde Outde Outde Outde	Increase beyond ASHRAE 62.: am Ventilation Efficiency with 30° oor air intake required for system oor air per unit floor area for syste oor air per person served by syst oor air as a % of design primary a lations	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2) supply air (EQc2)	Vot30/As Vot30/As Vot30/Ps	cfm s cfm/sf s cfm/p						4,421 0.22 54.7		
Results of 30% Syste Outde Outde Outde Outde Outde Linitial Calculat	Increase beyond ASHRAE 62.: em Ventilation Efficiency with 30° cor air intake required for system oor air per unit floor area for syst cor air per person served by syst cor air as a % of design primary : Ilations ions for the System as a wholi-	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2) supply air (EQc2)	re (EQc2) Evz30 Vot30 Vot30/As 2) Vot30/Ps Ypd30	cfm s cfm/sf s cfm/p %		Vned De				4,421 0.22 54.7 8%		
Results of 30% Syste Outde Outde Outde Outde Outde Initial Calculat Syste	Increase beyond ASHRAE 62.: am Ventilation Efficiency with 30° oor air intake required for system oor air per unit floor area for syste oor air per person served by syst oor air as a % of design primary a lations	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2) supply air (EQc2) e ditioned analyzed	Vot30/As Vot30/As Vot30/Ps	cfm s cfm/sf s cfm/p	===	Vpsd Ds Rps <i>Ps</i> + Ras	As	,	=	43210		
Outdo Results of 30% Syste Outdo Outdo Outdo Outdo Outdo Outdo Initial Calculat Syste Unco 30%	Increase beyond ASHRAE 62: em Ventilation Efficiency with 30 cor air intake required for system oor air per unit floor area for system or air per person served by system air as a % of design primary stations ideas from the System as a whole em primary supply air flow at congreted OA intake flow req'd for sincrease Uncorrected OA intake	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2) supply air (EQc2) e dittioned analyzed ystem flow reqd for system (EAc2)	Vot30 Vot30 Vot30 Vot30/Ps Ypd30 Vps Vou Vou30	cfm s cfm/sf s cfm/p %	=======================================	Rps Ps + Ras (Rps Ps + Ras		1.3		43210 2644 344:		
Outdo Results of 30% Syste Outdo Outdo Outdo Outdo Unitial Calculat Syste Unco 30% Unco	Increase beyond ASHRAE 62.: am Ventilation Efficiency with 30° oor air intake required for system oor air per unit floor area for system oor air per person served by system or air as a % of design primary soor air as a whole of the system as a whole of the system as a whole or primary supply air flow at concrected OA intake flow req'd for soor air as a concrected OA req'd as a fraction of	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2) em (including diversity) (EQc2) guply air (EQc2) guditioned analyzed system flow req'd for system (EAc2) primary SA	Vps Vou30 Vou30 Vot30/Ps Ypd30 Vps Vou Vou30 Xs	cfm s cfm/sf s cfm/p %	=	Rps Ps + Ras (Rps Ps + Ras Vou / Vps		1.3		43210 2648 3442 0.06		
Outdo Results of 30% Syste Outdo Outdo Outdo Outdo Initial Calculat Initial Calculat Unco 30% Unco 30%	Increase beyond ASHRAE 62: em Ventilation Efficiency with 30 oor air intake required for system oor air per unit floor area for system or air per person served by systeor air as a % of design primary stor air as a % of design primary storair as a whole of the System as a whole em primary supply air flow at concrected OA intake flow red'd for sincrease Uncorrected OA intake rected OA red'd as a fraction of increase Uncorrected OA red'd as	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2) em (including diversity) (EQc2) guply air (EQc2) guditioned analyzed system flow req'd for system (EAc2) primary SA	Vot30 Vot30 Vot30 Vot30/Ps Ypd30 Vps Vou Vou30	cfm s cfm/sf s cfm/p %	=	Rps Ps + Ras (Rps Ps + Ras		1.3		4,421 0.22 54.7		
Results of 30% Syste Outde Outde Outde Outde Unitial Calculat Unco 30% Unco 10itial Calculat	Increase beyond ASHRAE 62.: am Ventilation Efficiency with 30° oor air intake required for system oor air per unit floor area for system oor air per person served by system or air as a % of design primary soor air as a whole of the system as a whole of the system as a whole or primary supply air flow at concrected OA intake flow req'd for soor air as a concrected OA req'd as a fraction of	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2) em (including diversity) (EQc2) guply air (EQc2) guditioned analyzed system flow req'd for system (EAc2) primary SA	Vps Vou30 Vou30 Vot30/Ps Ypd30 Vps Vou Vou30 Xs	cfm s cfm/sf s cfm/p %	=	Rps Ps + Ras (Rps Ps + Ras Vou / Vps		1.3		43210 2644 3443 0.00		
Results of 30% Syste Outde Outde Outde Outde Initial Calculat Unco 30% Unco 30% Initial Calculat Area Peop	Increase beyond ASHRAE 62: em Ventilation Efficiency with 30 cor air intake required for system or air per unit floor area for system or air per person served by system air as a % of design primary substance air as a % of design primary substance air as a whole em primary supply air flow at confricted OA intake flow req'd for sincrease Uncorrected OA intake receted OA req'd as a fraction of increase Uncorrected OA req'd aincrease Uncorrected OA req'd aions for individual zones outdoor air rate le outdoor air rate	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2) supply air (EQc2) e dittioned analyzed ystem flow redd for system (EAc2) primary SA is a fraction of primary SA	EV230 Vot30 Vot30/Ps Ypd30 Vps Vou Vou30 Xs Xs Ra Rp	cfm s cfm/sf s cfm/p % cfm cfm cfm	=	Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps		1.3		43210 2644 3443 0.00		
Results of 30% Syste Outde Outde Outde Outde Outde Unitial Calculat Syste Unco 30% Unco 30% Initial Calculat Area Peop Total	Increase beyond ASHRAE 62.: am Ventilation Efficiency with 30° oor air intake required for system oor air per unit floor area for system oor air per person served by system oor air as a % of design primary soor air as a whole on primary supply air flow at confrected OA intake flow req'd for soor air as a fraction of increase Uncorrected OA req'd a inons for individual zones outdoor air rate supply air to zone (at condition be supply air to zone (at condition be soor air as a supply air to zone (at condition be soor air arease supply air to zone (at condition be soor air arease supply air to zone (at condition be soor air air as a supply air to zone (at condition be soor air in the soor air arease supply air to zone (at condition be soor air arease supply air to zone (at condition be soor air arease supply air to zone (at condition be soor air arease supply air to zone (at condition be soor air arease supply air to zone (at condition be soor air arease supply air to zone (at condition be soor air arease supply air to zone (at condition be soor air arease supply air to zone (at condition be soor air arease).	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% inc	Vps Vou Vou30 Vou30 Vps Vou Vou30 Xs Xs30 Ra Rp Vdz	cfm s cfm/sf s cfm/p % cfm cfm cfm cfm cfm/sf cfm/p	= = =	Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdzd Ds		1.3		43210 2644 3443 0.00		
Results of 30% Syste Outde Outde Outde Outde Initial Calculat Initial Calculat Area Peop Total Prima	Increase beyond ASHRAE 62: em Ventilation Efficiency with 30 cor air intake required for system or air per unit floor area for system or air per person served by system air as a % of design primary silations in the system as a whole em primary supply air flow at concrected OA intake flow req'd for sincrease Uncorrected OA intake rected OA req'd as a fraction of increase Uncorrected OA req'd aions for individual zones outdoor air rate supply air to zone (at condition bary air flow to zone (at condition bary airflow to zone)	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% inc	EV230 Vot30 Vot30/Ps Ypd30 Vps Vou Vou30 Xs Xs Ra Rp	cfm s cfm/sf s cfm/p % cfm cfm cfm	= = =	Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdzd Ds Vdz Ep	As)*	1.3		43210 2644 3443 0.00		
Results of 30% Syste Outde Outde Outde Outde Outde Outde Outde Unitial Calculat Syste Unco 30% Unco 30% Initial Calculat Area Peop Total Prima Breat	Increase beyond ASHRAE 62.: am Ventilation Efficiency with 30° oor air intake required for system oor air per unit floor area for system oor air per person served by system oor air as a % of design primary soor air as a whole on primary supply air flow at confrected OA intake flow req'd for soor air as a fraction of increase Uncorrected OA req'd a inons for individual zones outdoor air rate supply air to zone (at condition be supply air to zone (at condition be soor air as a supply air to zone (at condition be soor air arease supply air to zone (at condition be soor air arease supply air to zone (at condition be soor air air as a supply air to zone (at condition be soor air in the soor air arease supply air to zone (at condition be soor air arease supply air to zone (at condition be soor air arease supply air to zone (at condition be soor air arease supply air to zone (at condition be soor air arease supply air to zone (at condition be soor air arease supply air to zone (at condition be soor air arease supply air to zone (at condition be soor air arease supply air to zone (at condition be soor air arease).	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% inc	Vps Vou Vou30 Vou30 Vou30/As Ypd30 Vps Vou Vou30 Xs Ra Rp Vdz Vpz	cfm/s cfm/sf cfm/p %	= = =	Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdzd Ds	As)*			43210 2648 3442 0.06		
Results of 30% Syste Outde Outde Outde Outde Outde Outde Unitial Calculat Syste Unco 30% Unco 30% Initial Calculat Prima Breat Breat	Increase beyond ASHRAE 62: am Ventilation Efficiency with 30 oor air intake required for system or air per unit floor area for system or air per person served by systoor air as a % of design primary substantial of the system as a whole on primary supply air flow at contracted OA intake flow req'd for sincrease Uncorrected OA intake rected OA req'd as a fraction of increase Uncorrected OA req'd as ions for individual zones outdoor air rate lee outdoor air rate supply air to zone (at condition being zone outdoor airflow with 30 outdoor airflow outdoor airflow with 30 outdoor airflow coutdoor airflow airflow to zone outdoor airflow with 30 outdoor airflow airflow coutdoor airflow airflow coutdoor	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) % increase (EQc2)	Vps Vou Vou30 Vou30 Vou30/As Vpd30 Vou30/As Vpd30 Vou Vou30 Xs Xs Xs 30 Ra Rp Vdz Vpz Vbz 30 Voz Voz Voz Voz Voz Voz Vou30 Voz Vou30 Voz Vou30 Voz Vou30 Voz Vou30 Voz Vou30 Voz Vou30 Voz Vou30 Voz Vou30 Voz Vou30 Voz Vou30 Voz Vou30 Voz Vou30 Voz Vou30 Voz Vou30 Voz Vou30 Voz Voz Voz Voz Voz Voz Voz Voz Voz Voz	cfm s cfm/sf s cfm/sf s cfm/p % cfm cfm cfm cfm cfm cfm cfm		Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdzd Ds Vdz Ep Rp Pz + Ra Az (Rp Pz + Ra Az Vbz / Ez	As)*			43210 2644 3443 0.00		
Results of 30% Syste Outdo Initial Calculat Syste Unco 30% Unco 30% Initial Calculat Area Peop Total Prima Breat Breat Zone	Increase beyond ASHRAE 62: am Ventilation Efficiency with 30 oor air intake required for system oor air per unit floor area for system or air per person served by system air as a % of design primary soor air as a whole am primary supply air flow at concrected OA intake flow reqid for sincrease Uncorrected OA reqid as a fraction of increase Uncorrected OA reqid at ions for individual zones outdoor air rate le outdoor air rate supply air to zone (at condition brany airflow to zone (at condition brany airflow to zone (at condition brany airflow coutdoor airflow withing zone outdoor airflow with 30 outdoor airflow outdoor airflow increase supply air airflow airflow increase outdoor airflow with 30% increase	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2 supply air (EQc2) guditioned analyzed ystem flow req'd for system (EAc2) primary SA s a fraction of primary SA peing analyzed) peing analyzed) increase (EAc2) increase (EAc2)	Vps Vou Vou30 Vou30 Vot30/Ps Vpd30 Vps Vou Vou30 Xs Ra Rp Vdz Vpz Vbz Vbz	cfm/sf cfm/p % cfm		Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdzd Ds Vdz Ep Rp Pz + Ra Az (Rp Pz + Ra Az Vbz 30/Ez	s As)* s z)*1.3			43210 2644 3443 0.00		
Results of 30% Syste Outdo Out	Increase beyond ASHRAE 62: em Ventilation Efficiency with 30° cor air intake required for system or air per unit floor area for system or air per person served by system as a % of design primary sites of the system as a % of design primary sites of the system as a whole	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2) supply air (EQc2) e diditioned analyzed ystem flow redd for system (EAc2) primary SA us a fraction of primary SA being analyzed) peing analyzed) peing analyzed) peing analyzed) peing analyzed) peing analyzed) peing increase (EAc2) peing (EAc2) peing increase (EAc2)	Vps Vou Vou Vou Vou Vou Vou Vou Vou Vou Vou	cfm s cfm/sf s cfm/sf s cfm/p % cfm cfm cfm cfm cfm cfm cfm		Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdzd Ds Vdz Ep Rp Pz + Ra Az (Rp Pz + Ra Az Vbz / Ez Ep + (1-Ep) Er	s As)* s z)*1.3			43210 2644 3443 0.00		
Results of 30% Syste Outdo Initial Calculat Syste Unco 30% Unco 30% Initial Calculat Area Peop Total Prima Breat Zone Zone Fract Fract Fract Fract	Increase beyond ASHRAE 62: am Ventilation Efficiency with 30 oor air intake required for system oor air per unit floor area for system or air per person served by system air as a % of design primary siliations. Illations Illa	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2 supply air (EQc2) e diditioned analyzed ystem flow req'd for system (EAc2) primary SA us a fraction of primary SA peing analyzed) peing analyzed) peing analyzed) peing en electric for system (EAc2) peing en electric	Vps Vou Vou30 Vou30/As Vpd30/As Vpd30 Vps Vou Vou30 Xs Rp Vdz Vpz Vbz Vbz Vbz Voz Voz Voz Voz Vbz Voz Voz Voz Voz Vbz Voz Voz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vb	cfm s cfm/sf s cfm/sf s cfm/p % cfm cfm cfm cfm cfm cfm cfm		Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdzd Ds Vdz Ep Rp Pz + Ra Az (Rp Pz + Ra Az Vbz 30/Ez Ep + (1-Ep) Er Ep 1-(1-Ez)(1-Ep)(1	z z z)*1.3			43210 2648 3442 0.06		
Results of 30% Syste Outde Out	Increase beyond ASHRAE 62: am Ventilation Efficiency with 30 oor air intake required for system or air per unit floor area for system or air per person served by system as a % of design primary substantial and a substantial and	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) e. diditioned analyzed ystem flow regd for system (EAc2) primary SA us a fraction of primary SA poeing analyzed) primary analyzed analyzed primary analyzed ana	Vps Vou Vou30 Voy30 Voy30 Voy30/Ps Vou Vou30 Xs Xs Xs 30 Ra Rp Vdz Vbz Vbz Vbz Voz Voz Voz 30 Fe Fb Fc Zd	cfm s cfm/sf s cfm/sf s cfm/p % cfm cfm cfm cfm cfm cfm cfm		Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdz Ep Rp Pz + Ra Az (Rp Pz + Ra Az (Rp Pz + Ra Az Vbz / Ez Vbz30/Ez Ep + (1-Ep) Er Ep 1-(1-Ez)(1-Ep)(voz / Vdz	z z z)*1.3			43210 2644 3443 0.00		
Results of 30% Syste Outdo Initial Calculat Syste Unco 30% Unco 30% Initial Calculat Prima Breat Peop Total Prima Breat Fract Zone Fract Fract Fract OA fr	Increase beyond ASHRAE 62: em Ventilation Efficiency with 30 oor air intake required for system oor air per unit floor area for system or air per person served by system as a % of design primary stor air as a whole em primary supply air flow at concrected OA intake flow req'd for sincrease Uncorrected OA intake rected OA req'd as a fraction of increase Uncorrected OA req'd aions for individual zones outdoor air rate le outdoor air rate supply air to zone (at condition being zone outdoor airflow withing zone outdoor airflow withing zone outdoor airflow with 30 outdoor airflow with 30 outdoor airflow with 30 outdoor airflow with 30% increase ion of zone supply from fully mixion of zone out on the supply air to zone OA not directly recircaction required in the supply air action required in the supply air detoring required in the primary air action required in the primary air action required in the primary air action required in the primary air	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2 supply air (EQc2) e dittioned analyzed ystem flow req'd for system (EAc2) primary SA use a fraction of primary SA peing analyzed) peing analyzed) peing analyzed) peing analyzed) peing increase (EAc2) the (EAc2) the (EAc2) the (EAc2) the (EAc2) the (EAc2) to the zone to the zone	Vps Vou Vou30 Vou30 Vou30/Ps Vpd30 Vou Vou30 Xs Ra Rp Vdz Vpz Vbz Vbz Vbz Vbz Voz Voz Voz Voz Voz Voz Voz Voz Voz Vo	cfm s cfm/sf s cfm/sf s cfm/p % cfm cfm cfm cfm cfm cfm cfm		Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdzd Ds Vdz Ep Rp Pz + Ra Az (Rp Pz + Ra Az (Rp Pz + Ra Az Vbz 30/Ez Ep + (1-Ep) Er Ep 1-(1-Ez)(1-Ep)(Voz / Vdz Voz / Vpz	z z z)*1.3			43210 2648 3442 0.06		
Results of 30% Syste Outdo Out	Increase beyond ASHRAE 62: am Ventilation Efficiency with 30 or air intake required for system or air per unit floor area for system or air per person served by system as a % of design primary area or air per person served by system as a % of design primary area or air per person served by system as a % of design primary area or air as a % of design primary area or a foot of the System as a whole or primary supply air flow at confincrease Uncorrected OA intake flow redid for sincrease Uncorrected OA redid as a fraction of increase Uncorrected OA redid a ions for individual zones outdoor air rate lee outdoor air rate supply air to zone (at condition being zone outdoor airflow withing zone outdoor airflow withing zone outdoor airflow with 30 outdoor airflow outdoor airflow with 30% increas ion of zone supply from fully mixion of zone one supply from fully mixion of zone OA not directly recite action required in the supply air action required in the primary air	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2 supply air (EQc2) e dititioned analyzed ystem flow reqd for system (EAc2) primary SA us a fraction of primary SA beeing analyzed) being analyzed) being analyzed) ee (EAc2) core (EAc	Vps Vou Vou30 Voy30 Voy30 Voy30/Ps Vou Vou30 Xs Xs Xs 30 Ra Rp Vdz Vbz Vbz Vbz Voz Voz Voz 30 Fe Fb Fc Zd	cfm s cfm/sf s cfm/sf s cfm/p % cfm cfm cfm cfm cfm cfm cfm		Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdz Ep Rp Pz + Ra Az (Rp Pz + Ra Az (Rp Pz + Ra Az Vbz / Ez Vbz30/Ez Ep + (1-Ep) Er Ep 1-(1-Ez)(1-Ep)(voz / Vdz	z z z)*1.3			43210 2648 3442 0.06		
Results of 30%. System Outdo O	Increase beyond ASHRAE 62: am Ventilation Efficiency with 30 oor air intake required for system oor air per unit floor area for system or air per person served by system as a % of design primary substance of air per person served by system as a % of design primary substance of air per person served by system as a whole of the system as a	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2 supply air (EQc2) e diditioned analyzed ystem flow req'd for system (EAc2) primary SA us a fraction of primary SA peing analyzed) to the zone for EAc2 to the zone for EAc2	Vps Vou Vou30 Vou30 Vou30/As Ypd30 Vou Vou30 Xs Rp Vdz Vpz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vb	cfm s cfm/sf s cfm/sf s cfm/p % cfm cfm cfm cfm cfm cfm cfm		Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdz d Ds Vdz Ep Rp Pz + Ra Az (Rp Pz + Ra Az Vbz / Ez Vbz30/Ez Ep + (1-Ep) Er Ep 1-(1-Ez)(1-Ep)(Voz / Vdz Voz30 / Vdz Voz30 / Vpz	z As)* z z)*1.3	3		43210 2644 3443 0.00		
Results of 30% Systet Outde Outde Outde Outde Outde Outde Outde Initial Calculat Systet Unco 30% Unco 30% Initial Calculat Prima Breat Prima Breat Fract Fract Fract Fract Fract Fract Fract Fract Fract System Ventila	Increase beyond ASHRAE 62: am Ventilation Efficiency with 30 oor air intake required for system or air per unit floor area for system or air per person served by system or air as a % of design primary substantial of the system as a whole of the system as a syst	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) editioned analyzed ystem flow regd for system (EAc2) primary SA us a fraction of primary SA poeing analyzed) primary SA us a fraction of primary SA poeing analyzed) primary SA us increase (EAc2) us	Vps Vot30 Vot30(Ps Ypd30) Vot30/As Ypd30 Vou Vou Vou Vou Vou Voy Vbz Vbz Vbz Vbz Vbz Vbz Voz Voz Voz Voz Voz Voz Voz Voz Voz Vo	cfm s cfm/sf s cfm/sf s cfm/p % cfm cfm cfm cfm cfm cfm cfm		Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdzd Ds Vdz Ep Rp Pz + Ra Az (Rp Pz + Ra Az (Rp Pz + Ra Az (Rp Pz + Ra Az (Rz Pz +	z As)* z z)*1.3)/Fa		43210 2644 3443 0.00		
Results of 30% Syster Outdo Ou	Increase beyond ASHRAE 62: em Ventilation Efficiency with 30 oor air intake required for system or air per unit floor area for system or air per person served by system as a % of design primary substantial system as a % of design primary substantial system as a % of design primary substantial system as a whole em primary supply air flow at concrected OA intake flow req'd for sincrease Uncorrected OA req'd as a fraction of increase Uncorrected OA req'd atom for increase Uncorrected OA req'd atom for increase Uncorrected OA req'd atom for individual zones outdoor air rate lee outdoor air rate supply air to zone (at condition being zone outdoor airflow with 30 outdoor airflow outdoor airflow with 30 increase ion of zone supply from fully mixion of zone OA not directly recinaction required in the supply air to action required in the supply air traction required in the supply air traction required in the supply air traction required in the primary air action required in the primary air faction required in the primary air faction required in the primary air action required in the primary air action required in the primary air faction required in the supply air to action required in the primary air faction required in the primary air faction required in the supply air to action required in the	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2 supply air (EQc2) e diditioned analyzed ystem flow req'd for system (EAc2) primary SA use a fraction of primary SA being analyzed) peing analyzed) peing analyzed) peing analyzed) peing analyzed) peing analyzed) peing analyzed) pet (EAc2) pet (EAc2	Vps Vou Vou30 Vou30/As Vou Vou30/As Vou Vou30 Xs Rp Vdz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vb	cfm s cfm/sf s cfm/sf s cfm/p % cfm cfm cfm cfm cfm cfm cfm		Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdzd Ds Vdz Ep Rp Pz + Ra Az (Rp Pz + Ra Az (Rp Pz + Ra Az Vbz30/Ez Ep + (1-Ep) Er Ep 1-(1-Ez)(1-Ep)(Voz / Vdz Voz30 / Vdz Voz30 / Vpz (Fa+FbXs-Foz (Fa+FbXs-Foz (Fa+FbXs-Foz	z As)* z z)*1.3)/Fa Ep)/Fa		43211 2644 3444 0.00		
Results of 30% Systet Outdd Initial Calculat Systet Unco 30% Unco 30% Initial Calculat Area Peop Total Prima Breat Zone Fract Fract Fract Fract OA fr OA fr OA fr OA fr System Ventila Zone Zone Systet Systet	Increase beyond ASHRAE 62: em Ventilation Efficiency with 30 oor air intake required for system or air per unit floor area for system or air per person served by system as a % of design primary soor air per person served by system as a % of design primary soor air as a whole em primary supply air flow at concrected OA intake flow reqd for sincrease Uncorrected OA intake rected OA reqd as a fraction of increase Uncorrected OA reqd a ions for individual zones outdoor air rate lee outdoor air rate supply air to zone (at condition being zone outdoor airflow withing zone outdoor airflow withing zone outdoor airflow with 30 outdoor airflow with 30 outdoor airflow with 30% increase ion of zone supply from fully mixion of zone OA not directly recircaction required in the supply air to action required in the primary air action regulation Efficiency (App A Me Ventilation Efficiency (App A Me Ventilation Efficiency (App & Me Wentilation Efficiency (App & Me	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2 supply air (EQc2) editioned analyzed ystem flow req'd for system (EAc2) primary SA use a fraction of primary SA being analyzed) being analyzed) eing analyzed) eing analyzed) eing analyzed) e (EAc2) e (EAc2) e (EAc2) e (EAc2) to the zone to the zone to the zone to the zone for EAc2 to the zone for EAc2 ethod) encrease (EAc2) (App A) Method) S.3 Method)	Vps Vou Vou30 Vou30 Vou30/Ps Vpd30 Vou Vou30 Xs Ra Rp Vdz Vpz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vb	cfm s cfm/sf s cfm/sf s cfm/p % cfm cfm cfm cfm cfm cfm cfm		Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdzd Ds Vdz Ep Rp Pz + Ra Az (Rp Pz +	(1-Er))/Fa ===p)/Fa ===		0.83 0.83 0.92		
Results of 30% Syste Outdo Out	Increase beyond ASHRAE 62: am Ventilation Efficiency with 30 oor air intake required for system oor air per unit floor area for system or air per person served by system as a % of design primary stations are as a % of design primary stations are as a % of design primary stations are as a whole of the system as a	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2 supply air (EQc2) e diditioned analyzed yes tend for system (EAc2) primary SA us a fraction of primary SA being analyzed) yeing analyzed) yeing analyzed) yeing analyzed) yeing analyzed) ye (EAc2) to the zone to the zone to the zone for EAc2 to the zone for EAc2 to the zone for EAc2 sthod) mcrease (EAc2) (App A) Method) 3.3 Method) increase (EAc2) (App A)	Vps Vpd30 Vou	cfm s cfm/sf s cfm/sf s cfm/p % cfm cfm cfm cfm cfm cfm cfm		Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdzd Ds Vdz Ep Rp Pz + Ra Az (Rp Pz + Ra Az (Rp Pz + Ra Az (Rp Pz + Ra Az Vbz / Ez Vbz 30/Ez Ep + (1-Ep) Er Ep 1-(1-Ez)(1-Ep)(voz / Vpz Voz 30 / Vdz Voz 30 / Vpz (Fa+FbXs-FcZ Chin (Ez-z) Value from Tat min (Evz 30)	z / (1-Er) [pzEp, pz20] [pz6] [pz6] [pz6] [pz6] [pz6] [pz6])/Fa = Ep)/Fa = 1		0.43211 2.22 54.7 89 43211 2644 3.442 0.00 0.00		
Results of 30% Systet Outdi Ou	Increase beyond ASHRAE 62: am Ventilation Efficiency with 30 oor air intake required for system or air per unit floor area for system or air per person served by system as a % of design primary area of the system as a % of design primary area of the system as a % of design primary area of the system as a whole or primary supply air flow at concrected OA intake flow redid for sincrease Uncorrected OA redid as a fraction of increase uncorrected OA redid as outdoor air rate supply air to zone (at condition being zone outdoor airflow withing zone outdoor airflow with 30 outdoor airflow outdoor airflow with 30% increasion of zone supply from fully mixion of zone OA not directly recite action required in the supply air action required in the primary air action required in Efficiency (App A Me Ventilation Efficiency (App A Me Ventilation Efficiency (Table 6 am Ventilation Efficiency (Table 6 am Ventilation Efficiency W 30% and ventilation E	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2 supply air (EQc2) e diditioned analyzed yes tend for system (EAc2) primary SA us a fraction of primary SA being analyzed) yeing analyzed) yeing analyzed) yeing analyzed) yeing analyzed) ye (EAc2) to the zone to the zone to the zone for EAc2 to the zone for EAc2 to the zone for EAc2 sthod) mcrease (EAc2) (App A) Method) 3.3 Method) increase (EAc2) (App A)	Vps Vou Vou30 Vou30 Vou30/Ps Vpd30 Vou Vou30 Xs Ra Rp Vdz Vpz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vb	cfm s cfm/sf s cfm/sf s cfm/p % cfm cfm cfm cfm cfm cfm cfm		Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdzd Ds Vdz Ep Rp Pz + Ra Az (Rp Pz +	z / (1-Er) [pzEp, pz20] [pz6] [pz6] [pz6] [pz6] [pz6] [pz6])/Fa = Ep)/Fa = 1		0.43211 2.22 54.7 89 43211 2644 3.442 0.00 0.00		
Results of 30% Syste Outdo Out	Increase beyond ASHRAE 62: am Ventilation Efficiency with 30 oor air intake required for system oor air per unit floor area for system or air per person served by system air a whole am primary supply air flow at consincease Uncorrected OA req'd for sincrease Uncorrected OA intake rected OA req'd as a fraction of increase Uncorrected OA req'd aims for individual zones outdoor air rate supply air to zone (at condition being zone outdoor airflow with 30 outdoor airflow outdoor airflow with 30 outdoor airflow in the supply air to action required in the supply air action required in the primary air action reflectency. Ventilation Efficiency (App A Me Ventilation Efficiency (App A) or air intake airflow (Eqp1)	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2 supply air (EQc2) e diditioned analyzed ystem flow req'd for system (EAc2) primary SA us a fraction of primary SA being analyzed) peing analyz	Vps Vou Vou30 Vou30/As Vou Vou30/As Vou Vou30 Xs 30 Ra Rp Vdz Vpz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vb	cfm s cfm/sf s cfm/p % cfm cfm cfm cfm/p cfm/p cfm cfm cfm		Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdzd Ds Vdz Ep Rp Pz + Ra Az (Rp Pz + Ra Az (Rp Pz + Ra Az (Rp Pz + Ra Az Vbz / Ez Vbz / Ez Vbz / Vdz Voz / Vdz Voz / Vdz Voz30 / Vdz Voz30 / Vpz (Fa+FbXs-FcZ min (Evz) Value from Tat min (Evz30) Value from Tat	z / (1-Er) [pzEp, pz20] [pz6] [pz6] [pz6] [pz6] [pz6] [pz6])/Fa = Ep)/Fa = 1		0.83 0.83 0.83 0.83 0.83		
Results of 30% Systet Outdo Initial Calculat Syste Unco 30% Unco 30% Initial Calculat Area Peop Total Prima Breat Zone Fract Fract Fract Fract Fract OA fr OA fr OA fr System Ventila Zone Zone Syste Syste Syste Syste Syste Outdo OA in OA in OA in Outdo Outdo	Increase beyond ASHRAE 62: em Ventilation Efficiency with 30 oor air intake required for system or air per unit floor area for system or air per person served by system as a % of design primary in the system as a % of design primary in the system as a % of design primary in the system as a whole in primary supply air flow at concrected OA intake flow req'd for sincrease Uncorrected OA intake flow req'd as a fraction of increase Uncorrected OA req'd as a fraction of increase Uncorrected OA req'd at ions for individual zones outdoor air rate supply air to zone (at condition being zone outdoor airflow with 30 outdoor airflow outdoor airflow with 30 increase ion of zone supply from fully mixion of zone OA not directly recipaction required in the supply air that in the synthesis of the primary air action required in the supply air that in the synthesis of	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2 supply air (EQc2) e. dittioned analyzed ystem flow req'd for system (EAc2) primary SA se a fraction of primary SA being analyzed) peing analyzed) peing analyzed) peing analyzed) peing analyzed) peing analyzed) peing analyzed to the zone for EAc2 to the zone (EAc2) (App A) micrease (EAc2) (App A) increase (EAc2) (Table 6.3) ystem y SA	Vps Vou Vou30 Vou30/As Vou Vou30/As Vou Vou30 Xs Rp Vdz Vpz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vb	cfm s cfm/sf s cfm/sf s cfm/p % cfm cfm cfm cfm cfm cfm cfm cfm		Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdzd Ds Vdz Ep Rp Pz + Ra Az (Rp Pz +	z / (1-Er) [pzEp, pz20] [pz6] [pz6] [pz6] [pz6] [pz6] [pz6])/Fa ==p)/Fa		0.83 0.83 0.92 0.83 0.92 0.78 0.00		
Results of 30% Systet Outdo	Increase beyond ASHRAE 62: am Ventilation Efficiency with 30% or air intake required for system or air per unit floor area for system or air per person served by system as a % of design primary size of air per person served by system as a % of design primary size of air per person served by system as a whole of the system as a system asy	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2 supply air (EQc2) e diditioned analyzed ystem flow redd for system (EAc2) primary SA us a fraction of primary SA being analyzed) being analyzed being analyzed being analyzed) being analyzed being analyzed being analyzed be	Vps Vps Vou	cfm s cfm/sf s cfm/p % cfm cfm cfm cfm/p cfm/p cfm cfm cfm		Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdzd Ds Vdz Ep Rp Pz + Ra Az (Rp Pz + Ra Az (Vbz / Vdz Vbz 30/Ez Ep 1-(1-Ez)(1-Ep)(1-E	z / (1-Er) [pzEp, pz20] [pz6] [pz6] [pz6] [pz6] [pz6] [pz6])/Fa = = = = = = = = = = = = = = = = = = =		0.83 0.93 0.83 0.92 0.85 0.92 0.78 0.85		
Results of 30% Syster Outde Outde Outde Outde Outde Outde Outde Initial Calculat Syster Unco 30% Unco 30% Initial Calculat Prima Breat Zone Fract Fract Fract Fract Fract Fract Fract Syster Unco 30% Outde	Increase beyond ASHRAE 62: am Ventilation Efficiency with 30 oor air intake required for system or air per unit floor area for system or air per person served by system as a % of design primary area or air per person served by system as a % of design primary area or air per person served by system as a % of design primary area or air per person served by system as a % of design primary area or air as a % of design primary area or air as a % of design primary area or air as a whole or primary supply air flow at confincrease Uncorrected OA intake or air area outdoor air rate area of a for	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2 supply air (EQc2) e diditioned analyzed ystem flow redd for system (EAc2) primary SA us a fraction of primary SA being analyzed) being analyzed being analyzed being analyzed) being analyzed being analyzed being analyzed be	Vps Vou Vou30 Vou30/As Vou Vou30/As Vou Vou30 Xs Rp Vdz Vpz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vb	cfm s cfm/sf s cfm/sf s cfm/p % cfm cfm cfm cfm cfm cfm cfm cfm		Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdzd Ds Vdz Ep Rp Pz + Ra Az (Rp Pz +	z / (1-Er) [pzEp, pz20] [pz6] [pz6] [pz6] [pz6] [pz6] [pz6])/Fa = = = = = = = = = = = = = = = = = = =		0.83 0.93 0.83 0.92 0.85 0.92 0.78 0.85		
Results of 30% Syste Outdo Out	Increase beyond ASHRAE 62: am Ventilation Efficiency with 30% or air intake required for system or air per unit floor area for system or air per person served by system as a % of design primary substance air per person served by system air per person served by system as a % of design primary substance air per person served by system as a whole am primary supply air flow at congrected OA intake flow req'd for sincrease Uncorrected OA req'd as a fraction of increase Uncorrected OA req'd air as for individual zones outdoor air rate supply air to zone (at condition being zone outdoor airflow in sone outdoor airflow in sone outdoor airflow in the supply air to zone on the supply air faction required in the supply air faction required in the supply air faction required in the primary air faction required in the primary air faction required in the primary air faction required in Efficiency (App A Me Wentilation Efficiency with 30% or air intake airflow (EQp1) or Air Intake Flow required to Syntake req'd as a fraction of primar or Air Intake Flow required to Syntake req'd as a fraction of primar general supplements.	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2 supply air (EQc2) e diditioned analyzed ystem flow redd for system (EAc2) primary SA us a fraction of primary SA being analyzed) being analyzed being analyzed being analyzed) being analyzed being analyzed being analyzed be	Vps Vou	cfm s cfm/sf s cfm/p % cfm cfm cfm cfm cfm cfm cfm cfm		Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdzd Ds Vdz Ep Rp Pz + Ra Az (Rp Pz + Ra Az (Vbz / Vdz Vbz 30/Ez Ep 1-(1-Ez)(1-Ep)(1-E	z / (1-Er) [pzEp, pz20] [pz6] [pz6] [pz6] [pz6] [pz6] [pz6])/Fa = = = = = = = = = = = = = = = = = = =		0.83 0.93 0.83 0.93 0.83 0.92 0.85		
Results of 30% Syste Outde Outde Outde Outde Outde Outde Outde Initial Calculat Syste Unco 30% Unco 30% Initial Calculat Prima Breat Breat Breat Breat Breat Fract Fract Fract Fract Fract Fract Fract Syste Syste Syste Syste Outde OA ir Outde OA ir Time-averagin Ime	Increase beyond ASHRAE 62: am Ventilation Efficiency with 30 oor air intake required for system or air per unit floor area for system or air per person served by system as a % of design primary area or air per person served by system as a % of design primary area or air per person served by system as a % of design primary area or air per person served by system as a % of design primary area or air as a % of design primary area or air as a % of design primary area or air as a whole or primary supply air flow at confincrease Uncorrected OA intake or air area outdoor air rate area of a for	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2 supply air (EQc2) e diditioned analyzed ystem flow redd for system (EAc2) primary SA us a fraction of primary SA being analyzed) being analyzed being analyzed being analyzed) being analyzed being analyzed being analyzed be	Vps Vps Vou	cfm s cfm/sf s cfm/sf s cfm/p % cfm cfm cfm cfm cfm cfm cfm cfm		Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdzd Ds Vdz Ep Rp Pz + Ra Az (Rp Pz + Ra Az (Vbz / Vdz Vbz 30/Ez Ep 1-(1-Ez)(1-Ep)(1-E	z / (1-Er) [pzEp, pz20] [pz6] [pz6] [pz6] [pz6] [pz6] [pz6])/Fa = = = = = = = = = = = = = = = = = = =		0.83 0.93 0.83 0.93 0.83 0.92 0.85		
Results of 30% Syste Outde Outde Outde Outde Outde Outde Outde Outde Initial Calculat Syste Unco 30% Unco 30% Initial Calculat Prima Breat Preac Peop Total Prima Breat Zone Zone Fract Fract Fract Fract Fract Fract Syste Syste Syste Syste Syste Syste Syste Time-averagin Time Room	Increase beyond ASHRAE 62: am Ventilation Efficiency with 30 oor air intake required for system or air per unit floor area for system or air per person served by system as a % of design primary soor air as a whole on the soor of design primary soor air as a whole on the soor of design primary soor of the soor	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2 supply air (EQc2) guditioned analyzed ystem flow req'd for system (EAc2) primary SA ss a fraction of primary SA seeing analyzed) ueing analyzed	Vps Vou Vou30 Xs30 Ra Rp Vdz Vbz30 Voz Vbz30 Vbz30 Vbz Vbz30 Vbz	cfm s cfm/sf cfm/p % cfm		Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdzd Ds Vdz Ep Rp Pz + Ra Az (Rp Pz + Ra Az (Vbz / Vdz Vbz 30/Ez Ep 1-(1-Ez)(1-Ep)(1-E	z / (1-Er) [pzEp, pz20] [pz6] [pz6] [pz6] [pz6] [pz6] [pz6])/Fa = = = = = = = = = = = = = = = = = = =		0.83 0.93 0.83 0.93 0.83 0.92 0.85		
Results of 30% Syster Outdo Ou	Increase beyond ASHRAE 62: em Ventilation Efficiency with 30 oor air intake required for system or air per unit floor area for system or air per person served by system as a % of design primary in the system as a % of design primary in the system as a % of design primary in the system as a whole in primary supply air flow at concrected OA intake flow reqid for sincrease Uncorrected OA intake flow reqid for sincrease Uncorrected OA reqid as a fraction of increase Uncorrected OA reqid as outdoor air rate are supply air to zone (at condition be any airflow to zone outdoor airflow with 30 outdoor airflow with 30 outdoor airflow with 30 increase ion of zone supply from fully mixion of zone Supply from fully mixion of zone outdoor airflow with 30 increase ion of zone supply from fully mixion of zone on the primary air action required in the supply air the cuton required in the primary air action required in Efficiency (App A Me Ventilation Efficiency (App A Me Ventilation Efficiency (App A Me Ventilation Efficiency W 30% or Air Intake Flow required to Syntake reqid as a fraction of primar or Air Intake Flow required to Syntake reqid as a fraction of primar period over which averaging can - sum of all values above will she	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2 supply air (EQc2) guditioned analyzed ystem flow req'd for system (EAc2) primary SA ss a fraction of primary SA seeing analyzed) ueing analyzed	Vps Vou Vou30 Vou30 Vou30/As Vou Vou30 Vou Vou30 Xs So Rp Vdz Vpz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vb	cfm s cfm/sf s cfm/p cfm		Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdzd Ds Vdz Ep Rp Pz + Ra Az (Rp Pz + Ra Az (Rp Pz + Ra Az Vbz / Ez Vbz / Ez Vbz / Vz Voz / Vdz Voz / Vdz Voz / Vdz Voz / Vps (Fa+FbXs-Fcz (Fa+FbXs-Fcz (Fa+FbXs-Fcz Min (Evz) Value from Tatmin (Evz30) Value from Tatmin (Evz30) Vou / Ev Vou / Vps Vou / Ev Vou / Vps	z / (1-Er) [pzEp, pz20] [pz6] [pz6] [pz6] [pz6] [pz6] [pz6])/Fa = = = = = = = = = = = = = = = = = = =		0.83 0.83 0.92 0.78 0.92 0.78 0.92 0.78 0.92		
Results of 30% Syste Outdo Out	Increase beyond ASHRAE 62: am Ventilation Efficiency with 30% or air intake required for system or air per unit floor area for system or air per person served by system air a whole or primary supply air flow at concreted OA intake flow req'd for sincrease Uncorrected OA intake rected OA req'd as a fraction of increase Uncorrected OA req'd aims for individual zones outdoor air rate supply air to zone (at condition being zone outdoor airflow with 30% increase ion of zone supply not directly recipion of zone supply from fully mixion of zone outdoor airflow outdoor airflow with 30% increase ion of zone supply from fully mixion of zone outdoor directly recipion of zone outdoor directly recipion of zone outdoor airflow in the supply air fraction required in the supply air fraction required in the primary air fullon Efficiency (App A Mem Ventilation Efficiency with 30% imm Ventilation Efficiency with 30% in a ventilation Efficiency with 30% in the primary air trake air flow (EQP1) or Air Intake Flow required to Syntake req'd as a fraction of primary air height period over which averaging can sum of all values above will shorting and all values above wi	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2 supply air (EQc2) e diditioned analyzed ystem flow req'd for system (EAc2) primary SA us a fraction of primary SA being analyzed) peing analyz	Vps Vou Vou30 Vou30 Vou30/As Vou Vou30 Vou Vou30 Xs So Rp Vdz Vpz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vb	cfm s cfm/sf s cfm/p cfm		Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdzd Ds Vdz Ep Rp Pz + Ra Az (Rp Pz + Ra Az (Rp Pz + Ra Az Vbz / Ez Vbz / Ez Vbz / Vz Voz / Vdz Voz / Vdz Voz / Vdz Voz / Vps (Fa+FbXs-Fcz (Fa+FbXs-Fcz (Fa+FbXs-Fcz Min (Evz) Value from Tatmin (Evz30) Value from Tatmin (Evz30) Vou / Ev Vou / Vps Vou / Ev Vou / Vps	z / (1-Er) [pzEp, pz20] [pz6] [pz6] [pz6] [pz6] [pz6] [pz6])/Fa = = = = = = = = = = = = = = = = = = =		0.83 0.83 0.92 0.78 0.92 0.78 0.92 0.78 0.92		
Results of 30% Syster Outde Outde Outde Outde Outde Outde Outde Initial Calculat Syster Unco 30% Unco 30% Initial Calculat Prima Breat Zone Fract Fract Fract Fract Fract Fract Fract Fract Syster Syster Syster Minimum outde OA ir Outde OA ir Time-averagin Time Room Time Error Sowincrease b	Increase beyond ASHRAE 62: am Ventilation Efficiency with 30 oor air intake required for system or air per unit floor area for system or air per person served by system as a % of design primary stor air as a whole on the store of the store	Neutilation Rate Procedur increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2 supply air (EQc2) editioned analyzed ystem flow reqd for system (EAc2) primary SA seing analyzed) peing analyzed)	Vps Vou Vou30 Vou30 Vou30/As Vou Vou30 Vou Vou30 Xs So Rp Vdz Vpz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vb	cfm s cfm/sf s cfm/p cfm		Rps Ps + Ras (Rps Ps + Ras Vou / Vps Vou30 / Vps Vdzd Ds Vdz Ep Rp Pz + Ra Az (Rp Pz + Ra Az (Rp Pz + Ra Az Vbz / Ez Vbz / Ez Vbz / Vz Voz / Vdz Voz / Vdz Voz / Vdz Voz / Vps (Fa+FbXs-Fcz (Fa+FbXs-Fcz (Fa+FbXs-Fcz Min (Evz) Value from Tatmin (Evz30) Value from Tatmin (Evz30) Vou / Ev Vou / Vps Vou / Ev Vou / Vps	z / (1-Er) [pzEp, pz20] [pz6] [pz6] [pz6] [pz6] [pz6] [pz6])/Fa = = = = = = = = = = = = = = = = = = =		0.83 0.83 0.92 0.78 0.83 0.92 0.78 0.85		
Results of 30% Syste Outde Initial Calculat Syste Unco 30% Initial Calculat Prima Breat Breat Breat Zone Zone Fract Fract Fract Fract Fract Fract Fract Syste Syste Syste Syste Syste Syste Time-averagin Time Room Time Error 30% increase b Outde OA in Cotal	Increase beyond ASHRAE 62: am Ventilation Efficiency with 30 oor air intake required for system or air per unit floor area for system or air per person served by system as a % of design primary area of the System as a whole am primary supply air flow at concerned to A intake flow reqided for sincrease Uncorrected OA intake flow reqided for sincrease Uncorrected OA reqided for supply air to zone (at condition being zone outdoor airflow with 30 outdoor airflow with 30% increase ion of zone supply from fully mixion of zone one supply from fully mixion of zone OA not directly recited for the supply air direction required in the supply air direction required in the primary air action required in the primary air action required in the primary air action efficiency Ventilation Efficiency (App A Me Ventilation Efficiency (App A Me Ventilation Efficiency (Table 6 am Ventilation Efficiency (Table 6 am Ventilation Efficiency (Table 6 am Ventilation Efficiency with 30% or Air Intake Flow required to Syntake reqided as a fraction of primar greater of the supply and a supply air supply and a flag that a fraction of primar greater of the supply and the supply and a flag that a fraction of primar greater of the supply and a fraction of primar greater of the supply and a flag that a fraction of primar greater of the supply and a fraction of primar greater of the supply and a flag that a fraction of primar greater of the supply and the supply and a fraction of primar greater of the supply and th	I Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2 supply air (EQc2) guiditioned analyzed ystem flow reqd for system (EAc2) primary SA seing analyzed) leeing analyzed) leeing analyzed) leeing analyzed) leeing analyzed) leeing analyzed) lee (EAc2) lee (EAc	Vps Vou Vou30 Voy Vou30 Voy Vou30 Voy Vou30 Voy Vou30 Xs Voy Vou Vou30 Xs Xs30 Ra Rp Vdz Vpz Vbz Vbz Vbz Vbz Vbz Vbz Vz Vbz Vbz Voz Vbz Voz Vbz Voz Voz Voz Voz Voy Vot Voy Vot Voy Vot Voy Vot Vot Y Vot Y Vot Voy Vot Y Vot Voy Voy Voy Voy Voy Ev30 Ev Ev30 Ev Ev30 Ev Ev30 Vot Y Vot Y Vot Y Vot Y Vot Vot Voy Vot Y Vot Voy	cfm s cfm/sf s cfm/p % cfm		Rps Ps + Ras (Rps Ps + Ras (Vou / Vps Vou30 / Vps Vdzd Ds Vdz Ep Rp Pz + Ra Az (Rp Pz + Ra Az (z / (1-Er) [pzEp, pz20] [pz6] [pz6] [pz6] [pz6] [pz6] [pz6])/Fa = = = = = = = = = = = = = = = = = = =		0.83 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00		
Results of 30% Syste Outdo OA ir Time-averagin Time Room Firor Error Sover Error Outdo OA ir Outdo	Increase beyond ASHRAE 62: am Ventilation Efficiency with 30 oor air intake required for system or air per unit floor area for system or air per person served by system as a % of design primary in the system as a % of design primary in the system as a % of design primary in the system as a whole in primary supply air flow at concrected OA intake flow req'd for sincrease Uncorrected OA intake flow req'd for sincrease Uncorrected OA req'd as a fraction of increase Uncorrected OA req'd aions for individual zones outdoor air rate supply air to zone (at condition being zone outdoor air flow thing zone outdoor airflow with 30 outdoor airflow in the supply air to zone OA not directly recipation of zone supply from fully mixion of zone OA not directly recipation required in the supply air to action required in the supply air to action required in the primary air action required in the supply air to action required in the primary air action required in the supply air to action required in Efficiency (App A Me Ventilation Efficie	1 Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2 supply air (EQc2) e. dittioned analyzed ystem flow req'd for system (EAc2) primary SA useing analyzed) primary SA useing analyzed primar	Vps Vou Vou30 Vot30/Ps Ypd30 Vou30/Ps Ypd30 Vou Vou30 Xs Vou Vou30 Xs So Rp Vdz Vpz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vbz Vb	cfm s cfm/sf s cfm/p % cfm		Rps Ps + Ras (Rps Ps + Ras (Vou / Vps Vou30 / Vps Vdzd Ds Vdz Ep Rp Pz + Ra Az (Rp Pz + Ra Az (Rp Pz + Ra Az Vbz / Ez Vbz30/Ez Ep + (1-Ep) Er Ep 1-(1-Ez)(1-Ep)(Voz / Vdz Voz30 / Vdz Voz30 / Vpz (Fa+FbXs-Fc2 min (Evz) Value from Tat min (Evz30) Value from Tat vou / Ev Vot / Vps Vou / Ev	z / (1-Er) [pzEp, pz20] [pz6] [pz6] [pz6] [pz6] [pz6] [pz6])/Fa = = = = = = = = = = = = = = = = = = =	FAL	0.83 0.83 0.92 0.78 0.85 0.92 0.78 0.00 0.00		
Results of 30% Systet Outde Outde Outde Outde Outde Outde Outde Outde Outde Unitial Calculat Syste Unco 30% Unco 30% Initial Calculat Prima Breat Breat Zone Fract Syste Syste Syste Syste Syste Syste Syste Time Room Time Room Time Error 30% increase b Outde OA ir OAd ir Outde OA ir	Increase beyond ASHRAE 62: am Ventilation Efficiency with 30 oor air intake required for system or air per unit floor area for system or air per person served by system as a % of design primary area of the System as a whole am primary supply air flow at concerned to A intake flow reqided for sincrease Uncorrected OA intake flow reqided for sincrease Uncorrected OA reqided for supply air to zone (at condition being zone outdoor airflow with 30 outdoor airflow with 30% increase ion of zone supply from fully mixion of zone one supply from fully mixion of zone OA not directly recited for the supply air direction required in the supply air direction required in the primary air action required in the primary air action required in the primary air action efficiency Ventilation Efficiency (App A Me Ventilation Efficiency (App A Me Ventilation Efficiency (Table 6 am Ventilation Efficiency (Table 6 am Ventilation Efficiency (Table 6 am Ventilation Efficiency with 30% or Air Intake Flow required to Syntake reqided as a fraction of primar greater of the supply and a supply air supply and a flag that a fraction of primar greater of the supply and the supply and a flag that a fraction of primar greater of the supply and a fraction of primar greater of the supply and a flag that a fraction of primar greater of the supply and a fraction of primar greater of the supply and a flag that a fraction of primar greater of the supply and the supply and a fraction of primar greater of the supply and th	I Ventilation Rate Procedur % increase (EQc2) with 30% increase (EQc2) em with 30% increase (EQc2) em with 30% increase (EQc2) em (including diversity) (EQc2 supply air (EQc2) guiditioned analyzed ystem flow req'd for system (EAc2) primary SA so a fraction of primary SA peing analyzed) peing analyzed peing anal	Vps Vou Vou30 Voy Vou30 Voy Vou30 Voy Vou30 Voy Vou30 Xs Voy Vou Vou30 Xs Xs30 Ra Rp Vdz Vpz Vbz Vbz Vbz Vbz Vbz Vbz Vz Vbz Vbz Voz Vbz Voz Vbz Voz Voz Voz Voz Voy Vot Voy Vot Voy Vot Voy Vot Vot Y Vot Y Vot Voy Vot Y Vot Voy Voy Voy Voy Voy Ev30 Ev Ev30 Ev Ev30 Ev Ev30 Vot Y Vot Y Vot Y Vot Y Vot Vot Voy Vot Y Vot Voy	cfm s cfm/sf s cfm/p % cfm		Rps Ps + Ras (Rps Ps + Ras (Vou / Vps Vou30 / Vps Vdzd Ds Vdz Ep Rp Pz + Ra Az (Rp Pz + Ra Az (z / (1-Er) [pzEp, pz20] [pz6] [pz6] [pz6] [pz6] [pz6] [pz6])/Fa Ep)/Fa	FAL	0.83 0.83 0.92 0.78 0.92 0.78 0.92 0.78 0.92		

Nathaniel J. Mooney

Mechanical Dr. William Bahnfleth

Final Report

04/03/13

12000CD - CLEAN CORRIDOR	12000CC - VESTIBULE	12005 - ANIMAL HOLDING	12007 - ANIMAL HOLDING	12009 - ANIMAL HOLDING	12011 - ANIMAL HOLDING	12013 - ANIMAL HOLDING	12015 - ANIMAL HOLDING	12122 - LOCKERS/BR EAK	12017 - ANIMAL HOLDING	12019 - ANIMAL HOLDING
12-1	12-1	12-3	12-5	12-7	12-9	12-11	12-13	12-93	12-15	12-17
Corridors	Corridors	Science laboratories	Science laboratories	Science laboratories	Science laboratories	Science laboratories	Science laboratories	Break rooms	Science laboratories	Science laboratories
1,117	193	381	382	382	383	305	304	300	304	303
1,200	0 50	1,000	1,000	1,000	1,000	750	2 750	7.5 750	750	750 600.00
100% CSCRW 1.00	100% CSCRW 1.00	75% CSCRW 1.00	75% CSCRW 1.00	75% CSCRW 1.00	75% CSCRW 1.00	73% CSCRW 1.00	73% CSCRW 1.00	67% CSCRW 1.00	73% CSCRW 1.00	73% CSCRW 1.00
1.00	1.00			1.00	1.00	1.00	1.00	1.00	1.00	1.00
0.06 0.00 1200 1200 67 87 67 87	0.06 0.00 50 50 12 15 12 15	10.00 750 750 89 115 89 115	10.00 750 750 89 115 89 115	10.00 750 750 89	0.18 10.00 750 750 89 116 89 116	0.18 10.00 550 550 75 97 75	550 75 97 75 97	5.00 500 500	97 75 97 1.00	0.18 10.00 550 550 75 97 75 97
1.00 1.00 0.06 0.06 0.07 0.07	1.00 1.00 0.23 0.23 0.30 0.30	1.00 0.12 0.12 0.15	1.00 0.12 0.12 0.15	0.12 0.12 0.15	0.12	1.00 1.00 0.14 0.14 0.18 0.18	1.00 0.14 0.14 0.18	0.11 0.11 0.14	1.00 1.00 0.14 0.14 0.18 0.18	1.00 1.00 0.14 0.14 0.18 0.18
1.01 1.01	0.83 0.78				0.94 0.93	0.93 0.90		0.95 0.94	0.93 0.90	0.93 0.90
308.30 0.10										
9 450 7403 FALSE										
366.32 0.08										

12021 - ANIMAL HOLDING	12023 - ANIMAL HOLDING	12025 - ANIMAL HOLDING	12000CE - CLEAN CORRIDOR	12027 - PROCEDURE ROOM	12029 - PROCEDURE ROOM	12031 - PROCEDURE ROOM	12033 - NECROPSY	12035 - NARCOTICS	12037 - BREAK RM	12039 - OFFICE	12048, 12052, 12056 - TESTING
12-19	12-21	12-23	12-25, 12-35	12-27	12-29	12-31	12-33	12-37	12-39	12-41	12-43
Science laboratories	Science laboratories	Science laboratories	Corridors	Medical Procedure	Medical Procedure	Medical Procedure	Science laboratories	Storage rooms	Break rooms	Office space	Science laboratories
349	345	282	958	103	109 2.18	84	94	49	193 4.825	67 0.335	98
1,000	1,000	750	1,800	2.06 300	300	1.68 300	1,350	200	400	220	825
75%	75%	73%	100%	100%	100%	100%	100%	100%	63%	100%	55%
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.00		1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
0.18 10.00 750 83 108 83 108 1.00 1.00 0.11 0.11 0.14	10.00 750 750 82 107 82 107 1.00 1.00 0.11 0.11 0.14	1.00 0.13 0.13 0.17 0.17	1.00 1.00 0.03 0.03 0.04	15.00 300 300 31 40 31 40 1.00 1.00 0.10 0.10 0.13	15.00 300 300 333 43 33 1.00 1.00 0.11 0.11 0.14	33 1.00 1.00 1.00 0.08 0.08 0.11	10.00 1350 1350 37 48 37 48 1.00 1.00 1.00 0.03 0.03	0.00 200 200 0 0 0 1.00 1.00 0.00 0.00 0	46 1.00 1.00 1.00 0.14 0.14 0.19	7 1.00 1.00 1.00 0.03 0.03 0.03	10.00 450 450 38 49 38 49 1.00 1.00 0.08 0.08
0.95 0.94		0.93 0.91	1.03						0.92		

2050. 12054, 12062 - TESTING	12041 - PROCEDURE ROOM	12043 - PROCEDURE ROOM	12045 - PROCEDURE ROOM	12000CG - CLEAN CORRIDOR	12047 - PROCEDURE ROOM	12000CH - BEHAVIORAL TESTING CORRIDOR	12000CH - BEHAVIORAL TESTING CORRIDOR	12049 - CONTROL AREA	120681 12072, 12076 - TESTING	12061,12063,1 2065 - IC	12067 - CONTROL AREA	12066, 12070, 12074 - TESTING	12000CJ - SOILED CORRIDOR	12077 - VESTIBULE	12079 - ANIMAL HOLDING
12-45	12-47	12-49	12-51	12-53	12-55	12-57	12-63	12-57	12-59	12-61	12-63	12-65	12-67	12-67	12-69
Science aboratories	Medical Procedure	Medical Procedure	Medical Procedure	Corridors	Medical Procedure	Corridors	Corridors	Corridors	Science laboratories	Science laboratories	Corridors	Science laboratories	Corridors	Unocc / Not Used	Science laboratories
121	107	99		228	96	360	360	443	99		446	118	356	74	37
825	2.14 300	1.98 450	2.08 300	650	1.92 300	275	0 275	900	825	150	900	825	200	50	1,00
600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.
55% CSCRW	100% CSCRW	100% CSCRW	100% CSCRW	100% CSCRW	100% CSCRW	100% CSCRW	100% CSCRW	100% CSCRW	55% CSCRW	100% CSCRW	100% CSCRW	55% CSCRW	100% CSCRW	100% CSCRW	75 CSCR
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.
1.00				1.00		1.00	1.00				1.00		1.00		
0.18 10.00				0.06		0.06	0.06 0.00	0.06			0.06	0.18 10.00	0.06 0.00		
450 450 42 54 42 54 1.00	300 32 42 32 42	450 30 39 30 39	300 31 41 31 41	650 650 14 18 14 18 1.00	300 29 37 29 37	275 275 22 28 22 28 1.00	275 275 22 28 22 28 1.00	35 27 35	450 38 49 38 49	150 7 9 7 9	900 900 27 35 27 35 1.00	21 28 21 28	200 200 21 28 21 28 1.00	50 0 0 0	1
1.00 1.00 0.09 0.09 0.12 0.12	1.00 0.11 0.11 0.14	1.00 0.07 0.07 0.09	1.00 0.10 0.10 0.14	1.00 1.00 0.02 0.02 0.03 0.03	1.00 0.10 0.10 0.12	1.00 1.00 0.08 0.08 0.10 0.10	1.00 0.08 0.08	1.00 0.03 0.03 0.04	1.00 0.08 0.08 0.11	1.00 0.04 0.04 0.06	1.00 1.00 0.03 0.03 0.04	1.00 0.05 0.05	1.00 1.00 0.11 0.11 0.14	1.00 0.00 0.00 0.00	1. 0. 0.
0.97 0.96				1.04 1.05		0.98 0.98	0.98 0.98				1.03 1.04		0.95 0.94		
			Moone											04/0	

12081 - ANIMAL HOLDING	12083 - ANIMAL HOLDING	12000CF - CLEAN CORRIDOR	12112 - OFFICE	12146 - OFFICE	12036 - AIR LOCK	12134 - MEN / LOCKERS, 12128 - WOMEN TOILET	12000LB - ELEVA LOBBY	1206000 - ELEC	120580 - ELEC	12110 - STORAGE	12116 - FEED EXP	12000CL - STREET CORRIDOR	12114 - AIR LOCK	12108 - IRR	12106 - VESTIBULE	12000CA - SOILED CORRIDOR
12-71	12-73	12-75, 12-77	12-79	12-81	12-83	12-85	12-87	12-89	12-89	12-95	12-97	12-101	12-103	12-105	12-105	12-107A, 12- 107B
Science laboratories	Science laboratories	Corridors	Office space	Office space	Corridors	Corridors	Corridors	Elec/mech equipment rooms	Elec/mech equipment rooms	Storage rooms	Occupiable storage rooms for dry materials	Corridors	Corridors	Science laboratories	Unocc / Not Used	Corridors
370	370	849	113 0.565	111 0.555	64 0	231	241 0	254 0	85 0	237	430 0.86	526 0	59 0		52 0	
1,000	1,000	1,350	220	220	550	600	300	1,250	100	300	600	550	50			
600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00	600.00
75%	75%	100%	100%	100%	100%	100%	100%	100%	100%	50%	50%	100%	100%	100%	100%	100%
CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00	CSCRW 1.00
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
0.18 10.00 750 750 87 113 1.00 1.00 0.12 0.12 0.15 0.95	10.00 750 750 87 113 87 113 1.00 1.00 0.12 0.15 0.15	0.06 0.00 13500 51 66 6.00 1.00 0.04 0.04 0.05 1.02 1.03	1.00 0.04 0.04 0.06 0.06	220 220 9 12 9 12 1.00 1.00 0.04 0.04 0.06	4 5 1.00 1.00 1.00 0.01 0.01 0.01 0.01	0.06 0.00 6000 14 18 11.00 1.00 0.02 0.02 0.03 0.03	0.06 0.00 3000 144 19 1.00 1.00 0.05 0.06 0.06	0.00 0.00 1.06	100 100 0 0 0 1.00 1.00 0.00 0.00 0.00	150 150 0 0 0 0 1.00 1.00 0.00 0.00 0.00	5.00 300 300 39 30 1.00 1.00 0.10 0.13 0.13	0.06 0.07 0.07	0.00 50 50 4 5 4 5 1.00 1.00 0.07 0.07 0.09 0.09	10.000 1500 1500 1500 1500 1500 1500 150	0.00 50 50 0 0 0 1.00 1.00 1.00 0.00 0.0	0.00 700 700 54 70 54 70 1.00 1.00 0.08 0.08 0.10

Appendix B: LEED 2009 Checklist Construction and Major Renovations

93 E	2009 for New Construction a	na major Ken	ovatio	ns			Pro	oject N
Proje	ct Checklist							[
1 3 <mark>Sustai</mark>	nable Sites P	ossible Points:	26	Υ?		teria	lls and Resources, Continued	
	Construction Activity Pollution Prevention			1 1	Cred	it 4	Recycled Content	1 t
Credit 1	Site Selection		1	1 1	Cred	it 5	Regional Materials	1 t
Credit 2	Development Density and Community Connec	tivity	5		1 Cred	it 6	Rapidly Renewable Materials	1
	Brownfield Redevelopment	•	1	1	Cred		Certified Wood	1
Credit 4.1	Alternative Transportation-Public Transport	tation Access	6					
Credit 4.2	Alternative Transportation-Bicycle Storage	and Changing Roon	1	10 1	4 Ind	loor	Environmental Quality Possible Points	: 15
	Alternative Transportation—Low-Emitting ar							
	Alternative Transportation—Parking Capacit		2	Y	Prere	a 1	Minimum Indoor Air Quality Performance	
	Site Development—Protect or Restore Habita	•	1	Y			Environmental Tobacco Smoke (ETS) Control	
	Site Development—Maximize Open Space		1	1			Outdoor Air Delivery Monitoring	1
	Stormwater Design—Quantity Control		1	1			Increased Ventilation	1
	Stormwater Design—Quality Control		1	1			Construction IAQ Management Plan—During Construction	1
	Heat Island Effect—Non-roof		1	1			Construction IAQ Management Plan—Before Occupancy	
	Heat Island Effect—Roof		1	1			Low-Emitting Materials—Adhesives and Sealants	1
	Light Pollution Reduction		1	1			Low-Emitting Materials—Paints and Coatings	- 1
- Credit o	Light Folderon reduction		•	1			Low-Emitting Materials—Flooring Systems	
3 Water	Efficiency P	ossible Points:	10	1			Low-Emitting Materials—Composite Wood and Agrifiber Prod	luct 1
3 Water	Efficiency	ossible Politis.	10	1			Indoor Chemical and Pollutant Source Control	1
Prerea 1	Water Use Reduction-20% Reduction			1			Controllability of Systems—Lighting	- 1
2 Credit 1			2 to 4	-			Controllability of Systems—Thermal Comfort	- 1
	Innovative Wastewater Technologies		2	1			Thermal Comfort—Design	- 1
	Water Use Reduction		2 to 4	•			Thermal Comfort—Verification	- 1
Credit 3	water ose Reduction		2104				Daylight and Views—Daylight	1
20 Energ	y and Atmosphere P	ossible Points:	35				Daylight and Views—Daylight Daylight and Views—Views	1
	•							
Prereq 1		gy Systems		4 2	Inn	iovat	tion and Design Process Possible Points	: 6
	Minimum Energy Performance							
	Fundamental Refrigerant Management			1			Innovation in Design: Specific Title	1
	Optimize Energy Performance		1 to 19	1			Innovation in Design: Specific Title	1
	On-Site Renewable Energy		1 to 7	1			Innovation in Design: Specific Title	1
	Enhanced Commissioning		2	1			Innovation in Design: Specific Title	1
	Enhanced Refrigerant Management		2	1			Innovation in Design: Specific Title	1
2 Credit 5			3	1	Cred	it 2	LEED Accredited Professional	1
Credit 6	Green Power		2					_
7 Maton	ials and Resources P	ossible Points:	1.4	4	Reg	giona	al Priority Credits Possible Point	s: 4
/ mater	iais and Resources P	ossible Politics:	14	1	Cred	ir 1 1	Regional Priority: Specific Credit	1
Prorog 1	Storage and Collection of Recyclables			1			Regional Priority: Specific Credit	1
	Building Reuse—Maintain Existing Walls, Floor	rs and Roof	1 to 3	1			Regional Priority: Specific Credit	1
	Building Reuse—Maintain 50% of Interior Non			1			Regional Priority: Specific Credit	1
	Construction Waste Management		1 to 2		Cred	R 1.4	negional Fronty: Specific credit	
	Materials Reuse		1 to 2	56 15	37 Tot	al .	Possible Point	c. 11
L Creat 3	materials vense		1 (0 2	120112	3/ TOL	.ut	Possible Politi	J. 11

Appendix C: EAc4 Enhanced Refrigerant Management

Equipment Type	Manufacturer	Model	_ <u></u>	tons)	N Q (tons) Refrig.	GWPr	ODPr	ODPr Rc (lb/ton) Life (yrs) Lr (%) Mr (%)	Life (yrs)	Lr (%)	Mr (%)	LCGWP	X10/5	Refrigerant Impact per ton	Refrigerant Impact Total
Centrifugal Chiller	CARRIER	19XRV5659374KFH64 2	2	450	R-134A	1320	0	3.5666667	25	2%	10%	113.0	0.0	113.0	101,693
Centrifugal Chiller	CARRIER	19XRV767755EMDH64 3 1000	ယ	1000	R-134A 7 1320	1320	0	2.697	25	2%	10%	85.4	0.0	85.4	256,323
			1	3900	TOTAL TONS	SNOT							TOTAL	91.8	358,016
	I		I											PASSES	
Legend:															
N	Number of pieces of	Number of pieces of equipment (multiplier).													
Q (tons)	Cooling capacity in tons.	tons.													
Refrig.	Refrigerant type.														
Rc (lb/ton)	Refrigerant charge	Refrigerant charge in lbs/ton. Provide from manufacturer documentation. Adjust for length of refrigerant lines, if applicable	anufa	cturer doc	umentation.	Adjust for I	ength of refriç	gerant lines, if a	applicable.						
Lr (%)	Annual leakage rat	Annual leakage rate, in % of total charge. Use default, unless supported by manufacturer documentation.	e defa	ult, unless	supported I	by manufact	turer docume	ntation.							
Mr (%)	End of equipment l	End of equipment life refrigerant loss, in % of total refrigerant charge. Use default.	total r	efrigerant	charge. Usi	e default.									

Nathaniel J. Mooney

75 AMES

EAc4 Enhanced Refrigerant Management
LEED NC v3

Mechanical Dr. William Bahnfleth Final Report 04/03/13 139

Table was created using equation

 $LCGWP + LCODP \times 105 \le 100$

Where

Calculation definitions for LCGWP + LCODP x 105 ≤ 100 (IP units)
LCODP = [ODPr x (Lr x Life +Mr) x Rc]/Life
LCGWP = [GWPr x (Lr x Life +Mr) x Rc]/Life
LCODP: Lifecycle Ozone Depletion Potential
(lb CFC 11/Ton-Year)
LCGWP: Lifecycle Direct Global Warming Potential
(lb CO2/Ton-Year)
GWPr: Global Warming Potential of Refrigerant
(0 to 12,000 lb CO2/lbr)
ODPr: Ozone Depletion Potential of Refrigerant
(0 to 0.2 lb CFC 11/lbr)
Lr: Refrigerant Leakage Rate
(0.5% to 2.0%; default of 2% unless otherwise demonstrated)
Mr: End-of-life Refrigerant Loss
(2% to 10%; default of 10% unless otherwise demonstrated)
Rc: Refrigerant Charge
(0.5 to 5.0 lbs of refrigerant per ton of gross ARI rated cooling
capacity)
Life: Equipment Life
(10 years; default based on equipment type, unless otherwise
demonstrated)

Appendix D: IEQc5 Indoor Chemical & Pollutant Source Control

12072 12074 12076 12076 1208 1208 1208 1208 1209 1210 1210 1210 1210 1210 1210 1210	120.43 120.45 120.47 120.47 120.50 120.52 120.54 120.62 120.66 120.68 120.68	12017 12017 12019 12021 12023 12025 12025 12026 12031 12033 12033 12033 12036	2000CA,CB,C 12005 12007 12009 12011 12013	10075	9076 9077 9077 9078 9082 9086 9088	9070	6124 7075 8025 8065	5035 5045 6115	B0003 B0003 B0005 B0025 1008 1008 2005 2015
TESTING TESTING ANNAL HOLDING ANNAL HOLDING ANNAL HOLDING ANNAL HOLDING ANNAL HOLDING ANNAL RECEIVING THE COMPANY OF THE COMPA	PROCEDURE ROOM PROCEDURE ROOM PROCEDURE ROOM PROCEDURE ROOM ITESTING	ANIMAL FOLDING ANIMAL FOLDING ANIMAL FOLDING ANIMAL FOLDING ANIMAL FOLDING ANIMAL FOLDING PROCEDURE ROOM	SOILED CORRIDOR ANIMAL HOLDING	LAB	TISSUE CULTURE ROOM TISSUE CULTURE ROOM PROCEDURE ROOM HOLDING RADIO ISOTOPE LAB RICH HOOM H-2 STURAGE	BL2 + TISSUE CULTURE ROOM LAB	BL2+ VRAL PREP SAMPLE PREP BSP PRE LAB BSP PRE LAB BSP PCR GAP LAB BSST PCR GAP LAB	RNAIBL2+ LAB RNAIBL2+ LAB GSAP LAB GEL ROOM	BIO WASTE MICROBLEN ITIR OZ WASTE CHEM STORAGE IH:2) VIRGIN CHEM STORAGE IH:2 VIRGIN C
12074 12073 12076 12076 12076 12081 12083 12084 12094 12109 12100 12100 12104 12106	12043 12047 12048 12050 12050 12050 12054 12056 12067 12067 12067 12070	12019 12017 12019 12019 12021 12023 12025 12025 12029 12031 12033 12035 12035	12005 12007 12007 12009 12011 12013	10075	9076 9077 9077 9078 9082 9086 9088 10062	9070	8025	5035 5045 6115 6118	B0003 B0005 B0020 1008 1008 2005 2015
98 120 99 970 370 370 370 388 968 968 968 108 82 82 87 87 87 107 117 117 117 20	99 104 96 98 121 121 120 120 118 118 99	304 303 303 349 345 282 103 109 84 94 94	2101 381 382 382 383 305	8361	275 508 508 229 86 122 92 92	408 7349	3876 3160 3160	1509 1509 2077 3700	Room Area (st) 191 203 160 183 124 1345 1374 1374 1374 1374
300 300 790 790 790 1000 1000 2980 500 300 300 300 300 500	500 500 500 300 300 300 300 300	550 550 550 750 750 750 450 450 450 350	3350 750 750 750 550 550	6000	1800 2700 600 400 1425 925	2700 4050	1100 10200 3100 7450	4400 4900 5150	Exahust Rate (clm) 760 190 200 200 200 3000 3000 1350 5035
(150) (150) (150) (150) (150) (150) (150) (150) (150) (150) (150) (150) (150) (150) (150)	(200) (200) (200) (150) (150) (150) (150) (150) (150) (150) (150) (150)	(150) (150) (150) (150) (150) (150) (150) (150) (150) (150) (150) (150)	(300) (300) (3.150) (150) (150) (150) (150) (150)	(1,500)	(300) (100) (200) (100) (150) (150) (150)	(100) (900) (900) (600)	(1.500) (600) (600) (600) (500) (150) (150)	(150) (150) (150) (300) (300) (300) (950) (600)	Do or Pressurization (+)- e(m) (200) (200) (150)
			21	14		→ N 60 80 →	▲ N → 5 N 6 5 →	<u> </u>	NUMBER OF DOORS
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	3 3 3 3 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		3.6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.6	7.0 3.6 3.6 3.6 3.6	3.6 3.0 3.5 5.8	3.6 7.0 6.0 5.0	3.6 6.0 3.6	Door Width (#)
8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.0 8.0	8.0	8.0 8.0 8.0	8.0	8.0	8.0 8.0 8.0	Door Height (#)
z z z z z z × z × z z z z z z z	z z z z z z z z z z z z z	z z z z z z z z z z z z	z	z	z z z z z z z ×	< < z z z :	z < < z < z < z	z < z < < z z -	Double Door?
3.06 2.50 3.03 0.77 2.03 2.03 2.51 3.06 6.15 3.66 4.22 2.88 4.23 4.23 4.33 3.75	6.57 4.81 5.21 3.06 2.48 3.09 2.50 2.50 3.06 2.50 3.06 2.50 3.06 2.50	1.81 1.82 2.15 2.17 2.66 4.37 4.13 5.36 5.36 4.67	1.59 1.97 1.96 1.96 1.44 1.80	0.72	6.55 5.31 2.62 4.65 11.68 10.05	0.55	4.89 2.63 0.98	2.92 2.36 1.39	Exhaust (c/m/t/2) 3.93 0.74 1.09 3.23 2.23 2.28 4.31 1.59 2.77
0.121 0.122 0.123 0.123 0.123 0.123 0.123 0.124 0.128 0.129 0.128 0.129 0.121 0.123 0.123 0.123 0.123 0.123 0.123	0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121	0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121	0.198 0.188 2.538 0.121 0.121 0.121 0.121 0.121 0.121	1.692	0.198 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121	0.121 0.917 0.917 0.719 0.371 0.194	0.121 1.016 0.725 0.396 0.776 0.177 0.1375	0.120 0.115 0.188 0.188 0.188 1.088 1.0375 0.121	00 or Grack Area (ft/2) 0.167 0.188 0.188 0.188 0.187 0.167 0.175 0.121 0.121 0.124 0.124 0.124 0.125 0.126 0.126
0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.097 0.107 0.171 0.171 0.171 0.171 0.172 0.173	0.171 0.171 0.171 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096	0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096	0.143 0.160 0.096 0.096 0.096 0.096 0.096 0.096	0.049	0.143 0.043 0.171 0.043 0.096 0.096 0.096 0.096	0.043 0.060 0.098 0.163 0.148	0.043 0.136 0.043 0.143 0.026 0.045	0.096 0.107 0.160 0.160 0.160 0.048 0.043	Door Pressurization (* wg.) 0.090 0.090 0.050 0.050 0.056 0.
23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92 29.74 20.92 20.93	42.53 42.53 23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92	23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92	35.67 39.74 23.92 23.92 23.92 23.92 23.92 23.92 23.92 23.92	12.21	35.67 10.63 42.53 10.63 23.92 23.92 23.92 23.92 23.92	10.63 14.96 24.34 40.50 36.94	10.63 33.86 10.63 35.67 6.44 11.14 39.74	23.92 26.60 39.74 39.74 11.85 39.74 10.63	Door Pressurization (Pa) 22.36 17.66 9.94 12.57 12.57 12.57 12.57 22.36 23.32 39.74 5.98 23.92 39.74
SLIDNG DOOR				INCLUDING CELLSORTER (1008) MICROSCOPY MAGNIC (1008) EOPMT STORAGE (1008) BACTERAL ROOM(10078) MICROSCOPY MAGNIC(1008) EPHYS ROOM (10084) MACHINE SHOP/ELECTRONICS(10078) CORRIDOR(1000CL, 1000CK, 1000CL)		NCLUDNG EPHY'S ROOM(9082) MICROSCOPY IMAGNG(9089), DARK ROOM (9084), CORRIDOR (9000CM), CORRIDOR (9000CM)	DOOR LEADS TO CORRIDOR 6000CR	리 젊	Room Separation NO DOOR PRESSURIZATION, BUT ASSUMING IT SHOULD BE -300 DOOR LEADS TO 3035

Appendix E: EQc7.1 01 Detailed Narrative from BR+A

1. It is expected that the occupants will, for the most part, dress seasonally. Since the building occupancy includes areas that require special clothing to fulfill the space function, such as lab coats for the lab areas, these areas were designed to have a consistent clothing level year round. Clothing insulation is considered in design only as it relates to the seasonal requirements for the space temperature and humidity setpoints, when the clothing levels are expected to be remarkably different throughout the year (short sleeves in summer, wool sweaters in winter) requiring different seasonal setpoints. Each unique category of space design setpoints is outlined on the LEED-Online Form.

The space setpoint for typical spaces on the project was designed based on 74°F and 50% RH in cooling mode and 68 °F in heating mode. These setpoints are also outlined in the uploaded HVAC BOD.

In all spaces that comprise this project, the space activity level was taken into account when calculating the cooling load and sizing the HVAC equipment serving the spaces. ASHRAE Fundamentals has several categories of occupant activity that designers use when calculating cooling loads, ranging from seated at theater (sitting for long periods of time), office work (standing and sitting), walking standing (moving about a lot between workstations) to higher level activities like factory work, bowling, and athletics, where the people would be contributing a much higher heat gain to the spaces. Since the spaces have primarily office, meeting space and lab occupancy, they were designed to the standing and sitting activity level.

Radiant temperatures are a concern in this building mainly at the perimeter glazed areas. Design measures to mitigate excess solar gain include active chilled beams, interior adjustable blinds, and daylighting control of the Eastern exposure light fixtures. Design measures to mitigate asymmetric radiant winter conditions near windows include excellent thermal-performing windows, radiant floor heating at the perimeter, and local perimeter thermal control zones.

The air speed is a consideration in the design of the air outlets in regards to placement and outlet

velocity of the air distribution systems. The supply air diffusers were selected and placed to prevent any air "dumping" on the occupants, where the cold air hits an obstruction and crashes down on the occupants at low discharge air temperatures, or high discharge air velocities preventing the cold discharge air from mixing at the ceiling level before reaching the occupied zone. As such, the diffusers were placed away from any obstructions such as columns and were selected so that their 50 fpm throw (distance from the diffuser at which the air is at 50 fpm) was low enough to prevent the air streams from adjacent diffusers from crashing, which would have the same effect. The diffusers are all a high-induction type to allow for proper air mixing with the ambient air prior to reaching the occupants at a lower velocity (less than 40 fpm), eliminating both drafts and cold spots over a variable volume operating range.

- 2. The unit capacities to serve the space conditions are as indicated in the uploaded AHU schedule and psychrometric charts. It is expected that the space comfort levels will be maintained year round with the VAV systems as designed and controlled. Refer to the attached Sequences of Operation for the designed response of the systems to varying loads and conditions.
- 3. The systems have been designed to maintain comfort levels within the building year round and under all occupancy levels. The systems were designed at outside air conditions (summer and winter) that exceed ASHRAE's 1% weather conditions, making weather related comfort issues such as extended heat waves or cold snaps less likely, though not impossible. The only other factors that would negatively impact space comfort, besides problems with the installation or operation of the systems, would be if space occupancies changed dramatically post-installation, making the as-designed HVAC systems over- or under-sized for the new usage. The diversity built into the systems should allow for the zone level HVAC to be modified or replaced in these cases without impacting the central system capacities.
- 4. Please refer to uploaded ductwork and piping plans for the space layouts served by the HVAC systems. Individual zones are identified by the terminal devices (VAV/CV boxes, chilled beams, radiant heating). All terminal devices, as well as registers and outlets, are labeled and scheduled in the uploaded documentation.
- 5. It is not expected that any structural or decorative items will negatively impact comfort levels within the spaces. All outlets have been selected and located to prevent any drafts or cold spots. The control sensors have been located within the room to be away from heat sources, including windows and equipment layouts as designed; the occupants will be oriented to the need to not obstruct the sensors by the building operators once the building is occupied and as new employees are brought on board as part of their thermal comfort response to EQc7.2.
- 6. It is not anticipated that any zone will have areas outside the comfort control areas that will preclude any occupants from being permanently located.
- 7. Please refer to uploaded piping plans for locations of thermal controls and the Instrumentation Terminal Devices and Direct Digital/Automatic Temperature Controls documents for control descriptions. The temperature sensors to be installed on this project provide some manual adjustment of the local setpoint for each zone (±4 °F) but the overall control of the facility will be automatically controlled by the BMS.
- 8. The control functionality that must be met on this project is outlined in the Direct Digital/Automatic Temperature Controls and Sequences of Operation documents, which have been uploaded. The final control sequences and diagrams will be produced by the installing contractor and provided to the building Owner as part of the project closeout documents.
- 9. The operation and maintenance documentation, including the building controls, will be provided to the building Owner as part of the project closeout documents.

Final Report

- 10. The operation and maintenance requirements of the building controls will be provided to the building Owner as part of the project closeout documents. All zone and central controls will be automatic and monitored and supervised by the BMS.
- 11. The capacity of the unit serving the project was based on the calculated peak loads. These were based on the outside air conditions and interior cooling loads for the project, as listed in the uploaded HVAC BOD and the envelope criteria as listed below. The outside air loads were based on the conditions outlined in the uploaded HVAC BOD and psychometric charts and the air volumes listed in the uploaded AHU schedules.

The building envelope information was based on the actual architectural design as follows:

Assembly U-value: 0.043 Btu/h-ft2-F; corrugated metal panel, 2 1/2" R.I, air barrier, 5/8" sheathing, 31/2" cavity insulation, 1/2" GWB.

Roof: Assembly U-value: 0.036 Btu/h-ft2-F; 2" conc pavers, 4" R.I, 1/8" asphalt board, waterproof membrane, 4 1/2" normal weight concrete slab, 3" vented roof deck

Floor: 6" conc slab, w/continuous vapor barrier & 2" continuous insulation under the slab.

1" clear heat strengthened radiant low-e insulating glass. Whole curtain wall U-value: 0.3, Glazing: SHGC: 0.41

Since all the installed systems are variable volume, they are fully capable of meeting the expected diversity in the cooling and heating loads throughout the year.

Appendix F: Labs To Aircuity Optinet System

Areas to Aircu	ity	
Space	SpaceType	Area (SF)
2005 - RNAi LAB	Aircutity	1344.68994
2015 - RNAi LAB	Aircutity	1373.68994
3029 - TISSUE CULTURE ROOM	Aircuity- Tissue	314
3035 - NOVEL THERAPEUTICS/ CHEM BIO	Aircutity	3163
4045 - POST PCR LAB BL2	Aircutity	1366
5045 - RNAi BL2+ LAB	Aircutity	1509
5035 - RNAi BL2+ LAB	Aircutity	2077
6115 - GSAP LAB	Aircutity	3375
6128 - TISSUE CULTURE	Aircuity- Tissue	211
7045 - R&D	Aircutity	1510
7055 - ION DETECTION	Aircutity	1132
7065 - ILLUMINA	Aircutity	1831
7075 - SAMPLE PREP	Aircutity	3326
7085 - CLEAN SAMPLE 2	Aircutity	914
7095 - CLEAN SAMPLE 1	Aircutity	1373
8014 - TISSUE CULTURE ROOM	Aircuity- Tissue	252
8065 - POST PCR GAP LAB	Aircutity	4451
8075 - PRE PCR WHOLE GENOME	Aircutity	746
8095 - PRE PCR LOWPLEX	Aircutity	957
9070 - BL2 + TISSUE CULTURE ROOM	Aircuity- Tissue	421
9075 - LAB	Aircutity	6295
9086 - RADIO ISOTOPE RM	Aircutity	121
9076 - TISSUE CULTURE ROOM	Aircuity- Tissue	280
10079 - TISSUE CULTURE	Aircuity- Tissue	207
10090 - MICROSCOPY/ IMAGING	Animal Imaging	120
10082 - PROCEDURE ROOM	Aircutity	140
10076 - BACTERIAL ROOM	Aircutity	90
10068 - MICROSCOPY/ IMAGING	Animal Imaging	184
10075 - LAB	Aircutity	6705
9077 - TISSUE CULTURE ROOM	Aircuity- Tissue	484
10092 - BL2+ TISSUE CULTURE ROOM	Aircuity- Tissue	537
10078 - TISSUE CULTURE ROOM	Aircuity- Tissue	476
10078 - TISSUE CULTURE ROOM	Aircuity- Tissue	476

Appendix G: Schedules

Sensor type

Reset and lockout table

Oρ

Mechanical Dr. William Bahnfleth

Reset

NOTE: The reset and lockouts are available for the following: Design phase infiltration, ventilation, reheat minimum, and all system

Final Report

Offset

04/03/13

And

147

148

Appendix H: Chilled Beam Selections

		-							Vending	١	hilled B	Chilled Beam Schedule	edule			Ě			o e		-			ł	ł	Ī	Ī	١
w=hunidiy rafovroom=0,00223 wappy=0,007997 Space	Pe o ble	Floor Area	Space Air Flow CFM	Space Sensible Load Btufh	Space Latent Load Btu/h	primary air cooling Vbz Sensible La CFM Blu/h B	ir cooling sible Latent I/h Btu/h	Cooling / Vertilation It Driven For Late	ventration to to cover laten CFM	Ventilation Sensible Btufn	Sensible Bruh	Type	Quantity Len	Length Total Length ft	nlet	Nozzle P Size U	per Total Unit Airflow CFM CFM	al New Room ow Gsens Due to M Beam CFM	Cooling per per N Blu/hr	Total Cooling Btu/hr	Head Loss	nduction Orig	Original VAV D	Diffuser B	Total Existing \$	Resized C	Chiled Beams	Difference Original - New \$
8111 - Meeting	٠	122	8	12,103	96	88	82	. Cooling Driven	85 82	3413	88	ACBLHE	-		104	8	ET1 ET1	88	8258	8758	97	33	1,507.40 \$	\$ 334.15 \$	1,841.55 \$	1,069.73	\$ 1,200.00	(428.18)
10011 - OFFICE, 10009 - OFFICE, 10007 - OFFICE	m	28	18 <u>7</u>	34,637	ŝ	8	8	Cooling Driven	22	9991	33081	ACBLHE	е е	8 24	4x10	8	549	22778	10666	31998	5.37	8 8	2,286.07 \$	384.15 \$	2,620.22 \$	1,507.40	\$ 3,600.00	\$ (2,487.18)
10013 - OFFICE	2	752	188,	41,940	88	22	9 152	Cooling Driven	8	1286	77907	ACBLHE	2	9 16	4x10	8	827	\$6239	13909	27818	4.46	2	2,286.07 \$	334.15 \$	2,620.22 \$	1,507.40	\$ 2,400.00	1.782.1)
10014 - OFFICE, 10016 - OFFICE, 10018 - OFFICE	е	390	214	4,765	95	88	82	Cooling Driven	6	1986	3800	ACBLHE	e	4 12	40	9	32	2892	7887	7782	52	% S	1,312.43 \$	206.33 \$	1,517.75 \$	1,069.73	\$ 1,800.00	\$ (1,351.98
10017 - OFFICE, 10015 - OFFICE	2	782	1,808	40,239	415	88	198	. Cooling Driven	88	1490	38808	ACBLHE	2 8	8 16	4x10	8	827 286	24617	13909	27818	4.46	2	2,286.07 \$	334.15 \$	2,620.22 \$	1,507.40	\$ 2,400.00	1.782,1)
10021 - OFFICE, 10019 - OFFICE	2	292	916	18,185	88	989	921	Cooling Driven	n 29	1318	16867	ACBLHE	2	8 16	4x10	8	147 294	11836	1888	17982	4746	3.6	1,759.98 \$	334.15 \$	2,094.13 \$	1,312.43	\$ 2,400.00	\$ (1,618.30)
10022 - OFFICE, 10008 - OFFICE	2	313	172	3,825	87	82	2 172	Cooling Driven	22	1577	2248	ACBLHE	2		NO.	8	37 74	2236	3437	6874	25	5.7 \$	1,089.73 \$	206.33 \$	1,275.06 \$	1,069.73	\$ 1,200.00	(994.68)
10022 - OFFICE, 10029 - OFFICE	2	353	1,607	35,826	25	31 673	3 187	Cooling Driven	88	1788	34033	ACBLHE	2	8 16	4x10	88	827 236	20144	13909	27818	4.46	2	2,286.07 \$	334.15 \$	2,620.22 \$	1,507.40	\$ 2,400.00	\$ (1,287.18
10026 - OFFICE, 10024 - OFFICE, 10020 - OFFICE	е .	477	28	2,828	199	44 942	281	Cooling Driven	n 112	2419	3409	ACBLHE	e	4 12	10	8	88 114	3366	2002	8115	52	3.6	1,312.43 \$	206.33 \$	1,517.75 \$	1,069.73	\$ 1,800.00	(1,351.98
10028 - OFFICE, 10030 - OFFICE	2	314	172	3,837	827	83	8 81	Cooling Driven	52	1577	7560	ACBLHE	2		10	9	37 74	2238	3437	6874	25	5.7 \$	1,089.73 \$	206.33 \$	1,275.06 \$	1,069.73	\$ 1,200.00	(884.88)
10031 - LARGE CONFERENCE	a	433	2,475	85,188	3,356	134 2899	88	Cooling Driven	58 u	12118	43067	ACBLHE	4	6 24	10	88	157 628	9 41619	12172	48688	3.51	3.3	2,502.25 \$	334.15 \$	2,836.40 \$	1,507.40	\$ 3,600.00	(2271.00)
10047 - OFFICE, 10049 - OFFICE	2	692	239	5,111	376	98 98	35	. Cooling Driven	8	1361	3750	ACBLHE	2	~~	10	1 00	112 224	E	25 24 24	11628	25	33	1,312.43 \$	205.33 \$	1,517.75 \$	1,312.43	\$ 1,200.00	(884.88)
10048 - OFFICE, 10050 - OFFICE	2	092	142	3,177	蒸	88	3 153	Cooling Driven	20	1318	888	ACBLHE	2	~~			0 0	31.77	2138	4276	82	۰,	1,089.73 \$	206.33 \$	1,275.06 \$	1,069.73	\$ 1,200.00	(884.8%
10083 - OFFICE	2	247	1,390	30,996	20	28	84	Ventilation Driv	KG	88	30460	ACBLHE	2 1	10 20	4x10	88	325	17086	14087	28174	5.37	2	2,064.71 \$	334.15 \$	2,386.86 \$	1,507.40	\$ 3,000.00	\$ (2,108.54)
10057 - OFFICE, 10055 - OFFICE	2	14	1,567	78,831	379	28 567	7 157	. Cooling Driven	8	1861	33570	ACBLHE	2	6 12	10	8	103 206	30481	10960	21920	3.51	3.6	2,286.07 \$	394.15 \$	2,620.22 \$	1,312.43	\$ 1,800.00	(492.21
10078 - TISSUE CULTURE ROOM	22	949	1,638	36,528	2,859	18507	07 5126	5 Ventilation Drive	8	19440	17.088	ACBLHE	-	10 10	4x10	8	994	28484	17192	17192	5.37	2 8	2,286.07 \$	334.15 \$	2,620.22 \$	1,507.40	\$ 1,500.00	(387.18)
10079 - TISSJE CULTURE	9	702	067	17,609	1,243	373 8048	88	Verilaion Div	373	8048	1998	ACBLHE	-	10 10	4x10	80 2	210 210	13073	14039	14039	5.37	2	1,507.40 \$	394.15 \$	1,841.55 \$	1,312.43	\$ 1,500.00	(970.88)
10083 - LAB DESKS, 10081 - LAB DESKS	9	307	383	825,8	1,228	49 1061	75	Coding Driven	J 202	87#	4100	ACBLHE	2 ,	8	5	5	125 250	3128	2967	11934	52	27 \$	1,312.43 \$	334.15 \$	1,646.58 \$	1,312.43	\$ 1,200.00	(885.85)
10067 - LAB DESKS, 10085 - LAB DESKS, 10089 - LAB DESKS	6	432	951	21,205	1,728	69 1493	93 413	Coding Driven	- SSS	747.9	14962	ACBLHE	8	4 12	5	1 09	112 336	13947	5814	17442	25	3.3	1,759.98 \$	\$ 334.15 \$	2,094.13 \$	1,312.43	\$ 1,800.00	(1,018.30)
10092 - BL2+ TISSUE CULTURE ROOM	16	783	1,079	24,051	4,032	967 20879	739 5782	? Verilaion Div	267	20879	3172	ACBLHE	-	4 4	5	2 04	и	22517	4760	4760	25 ,	4.5 \$	2,064.71 \$	334.15 \$	2,398.86 \$	1,069.73	\$ 600.00	729.13
10053 - LAB DESKS, 10055 - LAB DESKS, 10097 - LAB DESKS	· ·	28	1,329	23,624	1,564	1361	51 374	Cooling Driven	18	999	23986	ACBLHE	e e	9 18	ıc.	8	134 402	20340	2327	23769	4.46	3.6	2,064.71 \$	\$ 334.15 \$	2,386.86 \$	1,507.40	\$ 2,700.00	(1,808.54)
10099 - LAB DESKS, 10101 - LAB DESKS, 10103 - LAB DESKS		45	1,423	31,717	1,660	1434	38/	Cooling Driven	<i>112</i> u	2883	25733	ACBL-HE	en	8 24	4x10	8	147 441	22191	1888	26973	4746	3.6	2,064.71 \$	\$ 334.15 \$	2,386.86 \$	1,507.40	\$ 3,600.00	\$ (2,708.54)
-	-	•	•		•																							

Nathaniel J. Mooney

Mechanical Dr. William Bahnfleth Final Report

10105 - OFFICE	-	97	10,491	751	13	8 8	80 Coolii	Cooling Driven 26	296	2 9990	ACBLHE	1	10	10	4x7 St	90 170	170	658	9704	9704	5.37 4.5	4.5 \$	1,507.40 \$	\$ 334.15 \$	1,841.55 \$	1,089.73 \$	1,500.00	\$ 00	(728.18)
10107 - SMALL CONFERENCE	2	8 8	842 18,776	1,589	25	1373 36	380 Cooli	Cooling Driven 286	2746	13030) ACBLHE	1	10	9	4x10 6i	88	88	12663	12859	12859	5.37 3.	33	1,759.98 \$	334.15 \$	2,094.13 \$	1,312.43	1,500.00	s 8	(718.30)
11007 - OFFICE, 11009 - OFFICE, 11011 - OFFICE	e	428	1,573 35,062	989	8	874 24	242 Codii	Cooling Driven 100	2160	32802	2 ACBLHE	E 3	80	24	4x10 44	147	177	25536	1668	26973	74 977	4.5 \$	2,286.07 \$	\$ 334.15 \$	2,620.22 \$	1,507.40	\$ 3,600.00	s	(2,487.18)
11008 - OFFICE, 11010 - OFFICE, 11012 - OFFICE	en	327	3,996	154	18	748 20	207 Codii	Coding Driven 76	1642	7284	ACBL-HE	E 3	4	12	25	40 37	ŧ	1538	3437	10311	25 5.	5.7 \$	1,069.73 \$	206.33 \$	1,275.06 \$	1,069.73	\$ 1,800.00	s,	(1,594.68)
11013-OFFICE	-	72 21	2,104 46,898	8	92	88	98 Ventila	afon Driven 16	8	3 46545	5 ACBL-HE	1	10	9	4x10 8	80 465	594	388	17192	17192	2.37 2	2 %	2,502.25 \$	334.15 \$	2,836.40 \$	1,507.40	\$ 1,500.00	s 8	(171.00)
11014-OFHCE, 11022-OFFICE	2	# E	4,069	99	8	883	189 Coolii	Cooling Driven 78	1685	788	ACBL-HE	E 2	4	60	25	37	72	2471	3437	6874	25 5.	5.7 \$	1,068.73 \$	\$ 205.33 \$	1,275.06 \$	1,069.73	\$ 1,200.00	S	(994.68)
11016 - FILES	-	82	1,931	ā	5	928	90 Codii	Cooling Driven 37	957	9 1131	ACBLHE	E 1	4	4	24	37	37	131	3437	3437	25 5.	5.7 \$	1,069.73 \$	206.33 \$	1,275.06 \$	1,089.73	00'009 \$ 1	S	(394.68)
11017-0FHCE, 11019-0FFICE, 11021-0FHCE, 11023-0FFICE	4	27	2,370 52,849	017	85	1042 28	289 Codii	Cooling Driven 119	0.022	0.000 O	9 ACBLHE	F 4	60	æ	4x10 7/	70 205	828	38137	9 9 88	38252	4.46 2.	2.7 \$	2,502.25 \$	\$ 334.15 \$	2,836.40 \$	1,759.98	\$ 4,800.00	s,	(3,723.58)
11024-OFFICE, 11028-OFFICE, 11028-OFFICE, 11030-OFFICE	so.	3 9	357 7,967	912	8	1337	370 Codii	Cooling Driven 152	3383	288 288	ACBLHE	+ 4	4	16	25	8	152	1894	2705	10820	25 33	3.6	1,312.43 \$	\$ 334.15 \$	1,646.58 \$	1,089.73	\$ 2,400.00	en.	(1,823.16)
11027 - OFFICE, 11029 - OFFICE	en	88 2,	1,564 34,872	205	8	367	204 Codii	Coding Driven 84	1814	14 33057	7 ACBL-HE	E 2	10	8	4x10 7/	072 07	95	222.08	11602	23204	4.46 2.	2.7 \$	2,286.07 \$	\$ 334.15 \$	2,620.22 \$	1,507.40	3,000.00	so.	(1,887.18)
11031-LARGE CONFERENCE	a	77 77	2,483 55,351	3,356	134 2	80	803 Codii	Coding Driven 561	12118	18 43234	4 ACBL-HE	E 4	00	æ	4x10 71	70 205	820	37639	9 9 88	38252	4.46 2.	2.7 \$	2,502.25 \$	\$ 334.15 \$	2,836.40 \$	1,759.98	\$ 4,800.00	es.	(3,723.58)
11047 - OFFICE, 11049 - OFFICE	2	252	226 5,029	%	KS	537	149 Coolii	Coding Driven 61	1318	8 37/1	ACBLHE	E 2	4		25	40 37	72	258	3437	6874	25 5.	5.7 \$	1,312.43 \$	206.33 \$	1,517.75 \$	1,089.73	\$ 1,200.00	s 8	(751.98)
11048 - OFFICE, 11050 - OFFICE	2	98	3,177	78.	18	533	148 Cooli	Coding Driven 61	1318	1859	ACBLHE	E 2	4		34	40 37	74	6751	3437	687.4	25 5.	5.7 \$	1,069.73 \$	206.33 \$	1,275.06 \$	1,089.73	1 \$ 1,200.00	s 8	(994.68)
11033-0FFICE	2	792	1,457 32,488	110	18	1,	149 Ventila	ation Driven 25	537	7 31951	1 ACBLHE	E 1	10	10	4x10 8	99 462	594	744	17192	17192	2.37 2	2 8	2,064.71 \$	\$ 334.15 \$	2,398.86 \$	1,507.40	\$ 1,500.00	S	(608.54)
11055 - OFFICE, 11057 - OFFICE	2	#	1570 34,997	188	88	88 21	157 Coolii	Coding Driven 65	1404	33883	3 ACBLHE	E 2	10	8	ντ 0 τ	072 07	979	2333	11602	23204	4.46 2.	2.7 \$	2,286.07 \$	\$ 334.15 \$	2,620.22 \$	1,507.40	3,000.00	so.	(1,887.18)
11064-OFFICE, 11082-OFFICE	2	259	142 3,165	395	88	531	147 Codii	Coding Driven 61	1318	1847	ACBLHE	E 2	4	80	5 44	37	1/4	1566	3437	687.4	25 5.	5.7 \$	1,069.73 \$	206.33 \$	1,275.06 \$	1,089.73	1 \$ 1,200.00	\$ 00	(994.68)
11088 - OFFICE, 11070 - OFFICE, 11072 - OFFICE	8	380 2	208 4,643	128	88	779 2.	216 Codii	Cooling Driven 89	1922	2 2721	ACBLHE	E 3	4	12	5 44	37	1111	2246	3437	10311	25 5:	5.7 \$	1,312.43 \$	\$ 206.33 \$	1,517.75 \$	1,069.73	1 \$ 1,800.00	s	(1,351.98)
11074-OFFICE, 11078-OFFICE, 11084-OFFICE	m	₩ -	138 4,411	909	8	740 20	205 Cooli	Coding Driven 84	1814	14 2587	ACBLHE	3	4	12	34	37	ŧ	2013	3437	10311	25 5.	5.7 \$	1,069.73 \$	206.33 \$	1,275.06 \$	1,089.73	1,800.00	so.	(1,594.68)
11006 - OFFICE, 11080 - OFFICE, 11088 - OFFICE	8	391 2	214 4,778	247	37.	208	222 Codii	Coding Driven 91	1986	2812	ACBL-HE	E 3	4	12	5 44	37	111	2380	3437	10311	25 5.	5.7 \$	1,312.43 \$	206.33 \$	1,517.75 \$	1,069.73	1,800.00	s	(1,351.98)
11081 - MEDIUM CONFERENCE	13	250 4	10,328	1,338	82	1674 46	464 Codii	Coding Driven 324	9669	3330	ACBL-HE	Е 3	4	12	5	37	#	1387	3437	10311	25 5.	5.7 \$	1,507.40 \$	\$ 334.15 \$	1,841.55 \$	1,069.73	\$ 1,800.00	v۶	(1,028.18)
11083 - OFFICE, 11085 - OFFICE	2	274 3	343 7,641	88	88	562	156 Cooli	Coding Driven 64	1382	22 6259	ACBLHE	E 2	4	00	2	20 37	74	6043	3437	6874	25 5.	5.7 \$	1,312.43 \$	\$ 334.15 \$	1,646.58 \$	1,069.73	1,200.00	\$ 00	(623.16)
11087 - OFFICE, 11089 - OFFICE, 11091 - OFFICE	es .	5 5	515 11,488	85	8	23	235 Codii	Coding Driven 97	2005	2885	ACBLHE	E 3	4	12	24	37	ŧ	0606	3437	10311	25 5.	5.7 \$	1,507.40 \$	\$ 334.15 \$	1,841.55 \$	1,069.73	1,800.00	ss.	(1,028.18)

11030 - O FRICE, 11098 - O FRICE, 11102 - O FRICE		391 214	4 4,778	115	33	2 802	22 000	Cooling Driven	- 6	1966	2812 A CB	ACBL-HE 3	4	12	м	40 37	ŧ	2380	3437	10311	25	5.7 \$	1,312.43	\$ 205.33	\$ 1,517.75	es.	1,069.73 \$ 1,	1,800.00 \$	(1,351.98)
11083 - O FFICE	-	180 671	14,967	92	4	988	102 Ventil	ation Driven	. 21	388	14597 AOB	ACBLHE 1	· · ·		4x10	09 239	526	10085	10718	10718	4.46	33	1,507.40	\$ 334.15	\$ 1,841.55	es.	1,312.43 \$ 1,	1,200.00 \$	(670.88)
11095 - O FFICE, 11097 - O FFICE, 11103 - O FFICE	3	418 1,425	31,766	175	8	2 2	237 Ventil	ridiation Driven	8	30	30909 ACB	з з	8	24	40	50 134	402	23083	7923	23769	4.46	3.6	2,064.71	\$ 334.15	\$ 2,338.86	s	1,507.40 \$ 3,	3,600.00 \$	(2,708.54)
11104 - O FFICE, 11106 - OFFICE, 11108 - OFFICE, 11110 - OFFICE	4	520 285	6,354	TZL.	89	1067 2	295 Cool	Cooling Driven	122	38.38	3719 ACB	ACBLHE 4	4	99	IO.	8	152	17.00	2705	10820	25	3.6	1,312.43	\$ 205.33	\$ 1,517.75	es.	1,069.73 \$ 2,	2,400.00 \$	(1,951.98)
11105 - O FFICE, 11107 - O FFICE, 11109 - O FFICE, 11111 - O FFICE	4	576 1,850	50 41,247	242	18	1182	327 Ventil	entlation Driven	r8	1182 40	40065 ACB	ACBLHE 4		æ	4x10	70 205	820	23535	9983	38.252	4.46	2.7 \$	2,286.07	\$ 334.15	\$ 2,620.22	es.	1,759.98 \$ 4,	4,800.00 \$	(3,939.76)
1112-NETWORK OPERATIONS CENTER	2	309 169	3,776	23	8	1.0	176 Cool	Cooling Driven	22	1555 2	2220 A CB	ACBLHE 1	4	4	NO.	70 125	125	1076	2967	2962	25	2.7 \$	1,069.73	\$ 205.33	\$ 1,275.06	en.	1,069.73 \$	\$ 00000	(394.68)
11116 - O FFICE, 11120 - O FFICE	7	296 162	3,617	717	88	11 10	168 Cool	Cooling Driven	8	1490 2	2126 ACB	ACBLHE 2	4		10	40 37	74	2018	3437	6874	25	5.7 \$	1,069.73	\$ 205.33	\$ 1,275.06	s	1,069.73 \$ 1,	1,200.00 \$	(994.68)
11122 - IT WORKROOM	7	27.1 149	3,311	379	88	98	154 Cool	Cooling Driven	8	1361	1951 ACB	овгне 1	4	4	10	521 07	125	16	2967	2962	25	2.7 \$	1,069.73	\$ 205.33	\$ 1,275.06	es.	1,069.73 \$	\$ 00000	(394.68)
11125 - O FFICE, 11172 - O FFICE, 11129 - O FFICE		389 1,236	86 27,553	81	37	738	21 Ventil	ilation Driven	37	32	26756 ACB	ACBLHE 3	9	86	10	50 135	405	18805	7748	23244	3.5	3.6	2,064.71	\$ 334.15	\$ 2,398.86	es.	1,507.40 \$ 2,	2,700.00 \$	(1,808.54)
11133-0FICE	-	180 589	13,130	252	4	988	102 Cool	Cooling Driven	77	706	2223 A OB	ACBLHE 1	9	9	4x10	711 05	. 177	2000	990	998	4.46	3.6	1,507.40	\$ 334.15	\$ 1,841.55	es.	1,069.73 \$	\$ 00006	(128.18)
11135-0FFICE, 11137-0FFICE, 11139-0FFICE		412 1,371	N 30,570	576	8	2 2	234 000	Cooling Driven	8	2074 28	28496 ACB	ACBLHE 3	9	8	NO.	50 135	405	21822	7748	23244	3.51	3.6	2,064.71	\$ 334.15	\$ 2,398.86	es.	1,507.40 \$ 2,	2,700.00 \$	(1,808.54)
11141 - O FFICE, 11143 - O FFICE, 11145 - O FFICE, 11147 - O FFICE	4	553 1,830	40,800	E	8	1134	314 000	Cooling Driven	128	36 36	38014 ACB	CBLHE 4		×	4x10	70 205	820	23088	9983	38.252	4.46	2.7 \$	2,286.07	\$ 334.15	\$ 2,620.22	es.	1,759.98 \$ 4,	4,800.00 \$	(3,939.76)
11142 - OFFICE, 11144 - OFFICE	7	260 142	3,177	38	18	533	148 Cool	Cooling Driven	19	1318	1859 A CB	овгне 2	4		ın	40 37	74	1579	3437	6874	25	5.7 \$	1,069.73	\$ 205.33	\$ 1,275.06	es.	1,069.73 \$ 1,	1,200.00 \$	(994.68)
2001 - MULTIPURPOSE CONFERENCE	39 7	788 1,119	19 24,948	6,103	244 6	1,	1460 Cool	Cooling Driven 10	1020 2	2002	2916 PC	PCBL 1	9	9		0 .	0	2316	3207	3207	2.8		2,064.71	\$ 334.15	\$ 2,338.86	s	2,064.71 \$	\$ 00006	(565.85)
2005 - RN # LAB	2	1,345 3,525	78,588	10,095	2420 52	52282 14	14480 Venili	antilation Driven 24	2420 5	52282 26	26307 ACB	ACBLHE 4		æ	4x10	88	372	70553	7160	28640	4.46	3.6	2,502.25	\$ 334.15	\$ 2,836.40	s	1,312.43 \$ 4,	4,800.00 \$	(3276.03)
2011 - PRE PCR	9	1,046	23,325	1,115	600 12	12960 36	3589 Verili	lation Driven 6	11 11	12960 10	10965 AOB	ACBLHE 2	8	16	20	40	132	20474	5129	10.258	4.46	4.5 \$	2,064.71	\$ 334.15	\$ 2,388.86	82	1,069.73 \$ 2,	2,400.00 \$	(1,070.87)
2015 - RNW LAB	42 1,	1,374 4,971	110,819	10,313	2473 55	53409 14	14792 Venii	ation Driven	2473 5	23409 57	57410 AOB	(OBLHE 5	10	98	4x10	8	465	110819	17192	0 0	5.37	2 \$	2,502.25	\$ 334.15	\$ 2,836.40	s	1,069.73 \$ 7,	3,500.00 \$	(5,733.33)
2025 - CLONE PRODUCTION CLEAN LAB		273 547	7 12,205	169	491 10	10596 29	2935 Verilli	ation Driven	491	10596	1610 PC	PCBL 1	4	4	•	0 -	0	1610	2138	2138	2.8	٠,	1,507.40	\$ 334.15	\$ 1,841.55	s	1,507.40 \$	80000	(265.85)
2035 - DNA CLEAN LAB	7	237 1,146	15,547	1,782	115 2	2477 6	986	Cooling Driven	19	410 25	25137 AOB	(CBLHE 3	8	24	4x7	40 112	336	18290	7456	22.368	4.46	4.5 \$	2,064.71	\$ 334.15	\$ 2,398.86	en	1,312.43 \$ 3,	3,600,000 \$	(2,513.57)
2051 - LAB DESKS	6	448 537	7 11,981	1,791	22	1547 4	428 Cool	Cooling Driven 2	238	6458	5623 AOB	4CBLHE 3	4	12	40	70 125	375	3881	2967	17901	25	2.7 \$	1,507.40	\$ 334.15	\$ 1,841.55	s	1,312.43 \$ 1,	1,800.00 \$	(1,270.88)
2053 - OFFICE	-	1,394	31,087	æ	ŧ	88	8	Cooling Driven	37	36	30288 AOB	408LHE 1	6	10	4x10	80 465	465	21043	17192	17192	2.37	2 \$	2,064.71	\$ 334.15	\$ 2,386.86	en.	1,507.40 \$ 1,	1,500.00 \$	(608.54)
3001 - LARGE CONFERENCE	34	979 3,242	12,271	4,849	194	4190 1-	1160 Cool	Cooling Driven 8	11 11	17518 54	54753 AOB	4 CBL-HE	10	40	4x10	60 283	1132	47820	12859	51436	5.37	3.3	2,502.25	\$ 334.15	\$ 2,836.40	en	2,064.71 \$ 6,	8,000,00,0	(5,228.31)
3007 - OFFICE, 3011 - OFFICE, 3009 - OFFICE		449 1,332	31,029	829	8	2 2	255 Cool	Cooling Driven	105	2268	28761 ACB	4CBLHE 3	9	18	NO.	50 135	405	22281	7748	23244	3.51	3.6	2,064.71	\$ 334.15	\$ 2,398.86	so.	1,507.40 \$ 2,	2,700.00 \$	(1,808.54)
3008 - OFFICE, 3022 - OFFICE		419 230	5,120	98	04	869 2	238 Cool	Cooling Driven	8	2117	3003 ACB	4CBL-HE 2	4	œ	vo.	99	100	2360	3242	6484	2.5	3.3	1,312.43	\$ 205.33	\$ 1,517.75	es.	1,069.73 \$ 1,	1,200.00 \$	(751.98)

Mechanical

Dr. William Bahnfleth

Final Report

3013 - OFFICE 3017 - OFFICE 3018 - OFFICE 2 254 3015 - OFFICE 2 254 3025 - Lie SuiPPORT 4 1-48		3,348	8	299 290	25	Coding Driven	8	1382	1966	ACBLHE	2	4	un 80	40	37 74	1750	3437	6874	25	5.7		1,069.73 \$ 205.33 \$	1,275.06	\$ 1,069.73	73 \$ 1,200.00	<u>\$</u>	(994.68)
~ 4	1,078	24,043	000	25 550	25	Coding Driven	8	1080	22963	ACBLHE	2	-4	un co	8	37 74	22445	3437	6874	2.5	5.7 \$	2,064.71	\$ 334.15 \$	2,388.86	\$ 1,089.73	.73 \$ 1,200.00	<i>ي</i> 8	129.13
7	58	8,584	¥8	24 521	4	Coding Driven	8	1274	, 8067	ACBLHE	е е	4	12 5	8	38 114	6121	2702	8115	2.5	3.6	1,312.43	\$ 334.15 \$	1,646.58	\$ 1,089.73	73 \$ 1,800.00	\$	(1,223.16)
	782	679'9	1,111	31 676	. 187	Coding Driven	8 8	4018	2811	PCBL	-	9	. 9		0 0	2811	3207	3207	2.8		1,312.43	\$ 206.33 \$	1,517.75	\$ 1,089.73	73 \$ 90000	\$	(451.38)
3029 - TISSUE CULTURE ROOM 10 314	1,186	26,441	988'1	565 12208	3381	Ventilation Diver	999	12208	14233	ACBLHE	2 8	8	16 4x10	8	367 236	10760	13909	27818	4.46	2 \$	2,064.71	\$ 334.15 \$	2,396.86	\$ 1,507.40	40 \$ 2,400.00	\$	(1,508.54)
3035 - NOVEL THERAPEUTICS/ CHEM BIO 96 3,163	10,323	230,155	23,746	5683 122977	77 34059	Ventilation Dive	88	122977	1, 77,1701	ACBLHE	8	6 12	120 4x10	88	90 1600	19696	5 5435	108700			2,502.25	\$ 334.15 \$	2,836.40	\$ 2,286.07	.07 \$ 18,000.00	es.	(17,449.67)
2022 - THE DESKS 91	2,476	55,198	3,128	125 2703	3 748	Coaling Driven	88	11297	43901	ACBL-HE	4	10 46	40 4x10	89	283 1132	30747	12859	51436	5.37	33	2,502.25	\$ 334.15 \$	2,836.40	\$ 2,064.71	71 \$ 6,000.00	<u>\$</u>	(5,228.31)
4001 - LARGE CONFERENCE 31 622	3,237	72,169	4,821	193 4165	5 1153	Coding Driven	908	17410	24780	ACBLHE	4	10 46	40 4x10	8	283 1132	4718	12859	51436	5.37	33	2,502.25	\$ 334.15 \$	2,836.40	\$ 2,064.71	71 \$ 6,000.00	\$	(5,228.31)
4007 - OFFICE, 4009 - OFFICE, 4011 - OFFICE 3 322	1,361	30,346	85	37 804	8	Coding Driven	28	1987	78328	ACBLHE	en	8 20	24 5	98	147 441	20021	1688	26973	4.46	3.6	2,064.71	\$ 334.15 \$	2,398.86	\$ 1,507.40	40 \$ 3,600.00	\$	(2,708.54)
4008 - OFFICE, 4016 - OFFICE 2 320	511	3,910	#	999	182	Coding Driven	К	1620	7 2390	ACBLHE	2	- 00	ις 0	9	37 74	2312	3437	6874	22	5.7 \$	1,069.73	\$ 206.33 \$	1,275.06	\$ 1,089.73	.73 \$ 1,200.00	<u>\$</u>	(994.68)
4010 - OFFICE, 4012 - OFFICE 2 200	24	3,177	78.	22 233	8	Coding Driven	6	1318	1859	ACBLHE	2	8	8	40	37 74	1579	3437	6874	2.5	5.7 \$	1,089.73	\$ 206.33 \$	1,275.06	\$ 1,089.73	73 \$ 1,200.00	S	(994.68)
40/3-OFFICE 2 275	1,082	24,127	88	28 564	35	Coding Driven	25	1102	23022	ACBLHE	2	9	12 4x10	8	202 404	15400	8928	17136	3.51	2 \$	2,064.71	\$ 334.15 \$	2,398.86	\$ 1,507.40	40 \$ 1,800.00	S	(908.54)
4015-OFFICE 170	1,022	22,782	82	16 349	.6	Coding Driven	8	% 4	21918 /	ACBLHE	-	10 10	10 4x10	8	465 465	12738	17192	17192	5.37	2 \$	2,064.71	\$ 334.15 \$	2,398.86	\$ 1,507.40	.40 \$ 1,500.00	S	(608.54)
40.7-OFFICE 1.55	297	17,006	85	13 277	ш ,	Coding Driven	88	28	16315	ACBLHE	-	8	8 4x10	8	272 275	11066	11280	11280	4.46	2 \$	1,507.40	\$ 334.15 \$	1,841.55	\$ 1,312.43	43 \$ 1,200.00	S	(670.88)
4018 - OFFICE, 4034 - OFFICE 3 475	280	5,804	199	45 974	0.22	Coding Driven	#	2398	3406	АСВІЧЕ	3	4 15	12 5	50 3	38 114	3342	2705	8115	2.5	3.6 \$	1,312.43	\$ 206.33	1,517.75	\$ 1,089.73	73 \$ 1,800.00	\$ 00	(1,351.98)
4020 - OFFICE, 4024 - OFFICE 3 3500	214	4,765	345	37 800	222	Coding Driven	88	1966	7800	ACBLHE	3 4	4 15	12 5	40 3	37 111	2368	3437	10311	2.5	5.7 \$	1,312.43	\$ 206.33 \$	1,517.75	\$ 1,089.73	73 \$ 1,800.00	\$ 00	(1,351.98)
4023 - OFFICE, 4021 - OFFICE 3 465	1,780	39,676	059	984	784	Coding Driven	109	2354	37322	ACBLHE	3	8 2,	24 4x10	0.2	205 615	2639.2	2 9563	28689	4.46	2.7 \$	2,286.07	\$ 334.15 \$	2,620.22	\$ 1,507.40	.40 \$ 3,600.00	\$ 00	(2,487.18)
4031 - MEDIUM CONFERENCE ROOM 13 251	1,273	28,391	1,945	87	- 465	Coding Driven	8 8	7020	21371	АСВІЧЕ	2 8	8 16	16 4x10	22	270 540	16727	11602	23204	4.46	2.7 \$	2,064.71	\$ 334.15 \$	2,398.86	\$ 1,507.40	40 \$ 2,400.00	\$	(1,508.54)
4032 - OFFICE 158	18	1,906	218	15 320	88	Coding Driven	8	877	1129	ACBLHE	-	7	4 5	40	37 37	1107	3437	3437	2.5	5.7 \$	1,089.73	\$ 206.33 \$	1,275.06	\$ 1,089.73	73 \$ 60000	s 00	(394.68)
4036 - OFFICE 154	8	1,882	215	15 316	.88	Coaling Driven	8	8//	1104	ACBL-HE	-	4	4 5	40 3	37 37	1083	3437	3437	2.5	5.7 \$	1,069.73	\$ 206.33 \$	1,275.06	\$ 1,089.73	.73 \$ 600.00	\$ 00	(394.68)
4038 - PRE PCR LAB 9 283	88	12,675	2,125	509 11003	3047	Ventilation Dive	806 E	11003	1672	PCBL	-	7	4 -		0 0	1672	2138	2138	2.8	67	1,507.40	\$ 334.15 \$	1,841.55	\$ 1,507.40	40 \$ 600.00	<u>\$</u>	(265.85)
4M5- POST PCR LAB BL2 41 1,366	4,689	104,535	10,255	2459 53110	14709	Ventilation Dive	an 2459	53110	21425	ACBL-HE	ις.	8	40 4x10	8	363 1815	6331	13909	69545	4.6	2 \$	2,502.25	\$ 334.15 \$	2,836.40	\$ 2,286.07	.07 \$ 6,000.00	\$	(5,449.67)
4047 - LAB SUPPORT 9 281	1,212	27,020	2,110	136 2832	2 812	Cooling Driven	88	7625	19395	ACBL-HE	2 8	8	16 4x10	22	205 410	18164	9563	19126	4.46	2.7 \$	2,064.71	\$ 334.15 \$	2,398.86	\$ 1,507.40	.40 \$ 2,400.00	\$	(1,508.54)
4053 - LMB DESKS 13 630	2,205	49,157	2,520	101 2177	7 603	Coding Driven	12 7	7606	40094	ACBLHE	4	80	32 4x10	8	205 820	32466	9563	38252	4.46	2.7 \$	2,502.25	\$ 334.15 \$	2,836.40	\$ 1,759.98	98 \$ 4,800.00	\$ 00	(3,723.58)

Nathaniel J. Mooney | Mechanical | Dr. William Bahnfleth

Final Report

5001 - LARGE CONFERENCE	25	635 3,253	72,525	4,921	197 42	11 1227	1178 Codii	Cooling Driven 82	71 288	1777	54748 ACB1	ACBLHE 4	10	40	4x10	60 283	1132	48074	4 12859	51436	5.37	3.3	2,502.25	\$ 334.15 \$	\$ 2,836.40	es.	2,064.71 \$ 6,	6,000.00	(6,228.31)
3007 - OFFICE, 5009 - OFFICE, 5011 - OFFICE	34	1,380	30,771	09	24	880	244 Codii	Cooling Driven 10	100 2.	2160 286	28611 ACBL	4CBLHE 3	9	8	un .	135	2 402	22023	3 7748	23244	3.51	3.6	2,064.71	\$ 334.15 \$	3 2,398.86	so.	1,507.40 \$ 2,	2,700.00 \$	(1,808.54)
5008 - WORK STATIONS	6 27	276 2,088	46,551	1,104	8	984 2	284 Cooli	Coding Diven 18	38	3896	42555 ACBL	ACBLHE 4	•	32	4x10	70 205	820	32466	9263	38252	4.46	2.7 \$	2,502.25	\$ 334.15 \$	\$ 2,836.40	s>>	1,759.98 \$ 4,	4,800.00 \$	(3,723.58)
5013 - OFFICE	-	87.1 T78	19,546	95	17 3	367 11	102 Ventila	entilation Diven	17 3	367 191	19179 ACBL	ACBLHE 2	9	12	4x10	80 202	5 404	10820	0 8928	17136	3.51	2 \$	1,759.98	\$ 334.15 \$	\$ 2,094.13	en.	1,507.40 \$ 1,	1,800.00 \$	(1,213.27)
5019 - OFFICE, 5017 - OFFICE, 5015 - OFFICE	338	39 2,021	45,058	474	88	11	183 Codii	Coding Driven 78	الا 1	1706 433	43351 ACBL	ACBLHE 3	60	32	4x10	70 205	820	32466	6 9563	38252	4.46	2.7 \$	2,502.25	\$ 334.15 \$	3 2,836.40	so.	1,759.98 \$ 4,	4,800.00 \$	(3,723.58)
5021 - MEDIUM CONFERENCE	13 252	1,363	30,394	1,953	85	1687 44	467 Codii	Coding Diven 32	326	282 280	23352 A/CB1	ACBLHE 2		32	4x10	70 205	820	32466	9263	38252	4.46	2.7 \$	2,064.71	\$ 334.15 \$	3 2,388.86	es.	1,759.98 \$ 4,	4,800.00 \$	(4,161.12)
5035 - RN AF BL 2+ LAB	63 2,077	6,173	137,634	15,583	3739 80	22 80754	22365 Ventia	entilation Diven 375	37.39 80	80754 568	9881 ACBL	ACBLHE 6	10	09	4x10	80 465	5 2790	77370	0 17192	103152	5.37	2 8	2,502.25	\$ 334.15 \$	\$ 2,836.40	s	2,502.25 \$ 9,	8 000006	(8,665.85)
5045 - RN AF BL 2+ LAB	46	1,509 6,467	144,178	42°C	2716 58	58670 16	16249 Ventila	ation Diven 27	2716 59	07.985	86509 ACBL	човине 6	9	09	4x10	80 465	5 2790	83914	4 17192	103152	5.37	2 %	2,502.25	\$ 334.15 \$	3 2,836.40	es.	2,502.25 \$ 9,	\$ 000006	(8,665.85)
8007 - OFFICE, 6009 - OFFICE, 6011 - OFFICE, 6013 - OFFICE	5	649 2,251	50,178	922	88	1331	389 Codii	Cooling Driven 12	121 26	2614 475	47565 ACBL	4 CBLHE 4	00	32	4x10	70 205	820	32466	6 9563	38252	4.46	2.7 \$	2,502.25	\$ 334.15	\$ 2,836.40	so.	1,759.98 \$ 4,	4,800.00 \$	(3,723.58)
6008 - OFFICE, 6020 - OFFICE	38	358 196	4,374	95	25	734 2	203 Coolii	Coding Driven 8	28	1814 29	2560 ACBL	CBLHE 2	4	60	ın	8	001	2214	3242	6484	57	33	1,069.73	\$ 206.33 \$	1,275.06	en.	1,089.73 \$ 1,	1,200.00 \$	(394.68)
6010 - OFFICE, 6012 - OFFICE	2 21	218 119	7,664	906	21	1, 14	124 Codii	Coding Driven 57	51	1102 19	1562 ACBL	CBLHE 2	4	60	vo.	10 23	88	141	3014	8209	0.84	6.2	1,069.73	\$ 206.33 \$	1,275.06	so.	1,089.73 \$ 1,	1,200.00 \$	(394.68)
6014- OFFICE, 6016 - OFFICE	2 34	348 191	4,252	184	33 7	714 11	198 Coolii	Coding Diven 8"	8	62 05/1	2503 ACBL	CBLHE 3	4	4	w	40 37	37	1107	3437	3437	52	5.7 \$	1,089.73	\$ 206.33 \$	1,275.06	es.	1,089.73 \$	\$ 00000	(394.68)
6015 - OFFICE, 6017 - OFFICE	2 24	249 1,556	34,688	8 8	2%	511	141 Cooli	Coding Diven 56	88	1253	33435 ACBL	CBLHE 2	10	20	4x10	07 07	0.0	23024	4 11602	23204	4.46	2.7 \$	2,286.07	\$ 334.15 \$	3 2,620.22	so.	1,507.40 \$ 3,	3,000.00 \$	(1,887.18)
6019 - OFFICE, 6021 - OFFICE	2 25	250 1,203	26,830	320	24 5	513 14	142 Codii	Cooling Driven 56	58 17	1253 286	25577 ACBL	ACBL-HE 2	8	16	4x10	70 205	6 410	17974	4 9563	19126	4.46	2.7 \$	2,064.71	\$ 334.15 \$	\$ 2,398.86	s	1,507.40 \$ 2,	2,400.00 \$	(1,508.54)
6023 - OFFICE, 6029 - OFFICE	34	1,809	40,336	35	8	827 2	ZS Codii	Coding Driven	36	386	38306 ACBL	овгне 2		16	4x10	70 363	3 726	24654	4 1300	27818	4.46	2.7 \$	2,286.07	\$ 334.15 \$	3 2,620.22	es.	1,507.40 \$ 2,	2,400.00 \$	(1,287.18)
6026 - OFFICE, 6030 - OFFICE	2 316	173	3,861	442	30 6	11	180 Codii	Coding Driven 74	16 16	1598 229	2263 AOBL	ACBL-HE 2	4	8	20	40 37	74	2263	3437	6874	25	5.7 \$	1,069.73	\$ 206.33 \$	3 1,275.06	\$	1,089.73 \$ 1,	1,200.00 \$	(894.68)
6031 - LARGE CONFERENCE	21	419 2,454	54,713	3,247	130 28	2806 7	777 Codii	Coding Driven 54	11.	11729 428	42965 ACBI	(OBLHE 4	10	40	4x10	60 283	3 1132	30262	2 12859	51436	5.37	3.3	2,502.25	\$ 334.15 \$	3 2,836.40	\$>	2,064.71 \$ 6,	6,000.00 \$	(5,228.31)
6047 - OFFICE, 6049 - OFFICE	2 261	222	5,016	398	55	1 292	148 Codii	Coding Driven 6'	11 12	1318 38	3899 ACBL	ACBL-HE 2	4	00	un .	40 37	72	3418	3437	6874	25	5.7 \$	1,312.43	\$ 205.33	\$ 1,517.75	ss.	1,089.73 \$ 1,	1,200.00 \$	(751.98)
6048 - OFFICE, 6050 - OFFICE	2 262	22	3,201	8 8	55	537 1	149 Codii	Cooling Driven 6'	9	1318	1884 ACBL	4CBLHE 2	4	60	w	40 37	72	1603	3437	6874	52	5.7 \$	1,089.73	\$ 20533 \$	1,275.06	es.	1,069.73 \$ 1,	1,200.00 \$	(994.68)
6055 - OFFICE, 6057 - OFFICE, 6053 - OFFICE	518	18 2,916	65,010	107	84	1063	294 Codii	Coding Driven 12	121 26	2614 623	62396 ACB1	4CBLHE 3	00	32	4x10	70 205	820	32466	6 9563	38252	4.46	2.7 \$	2,502.25	\$ 334.15 \$	\$ 2,836.40	es	1,759.98 \$ 4,	4,800.00 \$	(3,723.58)
6062 - OFFICE, 6064 - OFFICE	2 270	70 148	3,289	378	92	11	153 Codii	Coding Driven 60	11 11	1361 18	1938 ACB1	ACBL-HE 2	4	8	2	40 37	74	1771	3437	6874	2.5	5.7 \$	1,089.73	\$ 206.33 \$	1,275.06	\$	1,089.73 \$ 1,	1,200.00 \$	(894.68)
6088 - OFFICE, 6070 - OFFICE, 6072 - OFFICE	38	383 210	4,680	88	38	786 2	218 Codii	Coding Driven 99	98	1944	2736 ACBL	4ОВС-НЕ 3	4	12	un .	40 37	#	2382	3437	10311	22	5.7 \$	1,312.43	\$ 205.33	\$ 1,517.75	۰×	1,089.73 \$ 1,	1,800.00 \$	(1,351.98)
6074 - OFFICE, 6078 - OFFICE	2 24	245 134	2,994	85	23	503	139 Codii	Cooling Driven 50	57 15	rt 1231	1762 ACBL	4CBLHE 2	4	60	w	40 37	72	1395	3437	6874	52	5.7 \$	1,069.73	\$ 205.33	\$ 1,275.06	es.	1,089.73 \$ 1,	1,200.00 \$	(894.68)
6080 - OFFICE, 6082 - OFFICE	3 397	218	4,851	999	8	814 2	ZS6 Cooli	Cooling Driven 90	36	2009	2842 ACBL	ACBLHE 2	4	60	w	90 20	100	2691	3242	6484	52	33		1,312.43 \$ 205.33 \$	1,517.75	es.	1,089.73 \$ 1,	1,200.00 \$	(751.98)

Mechanical Dr. William Bahnfleth Final Report

6081 - OFFICE	2 23	235 167	3,734	88	8	28	134	Cooling Driven	18	1188	2546 Pi	POBL	9	9	•		0		2546 3	3207 328	3207 2.8	•	\$ 1,089	1,089.73 \$ 205.33	es.	1,275.06 \$	1,089.73 \$	\$ 900.00	\$ (694.68)
6092 - OFFICE, 6094 - O FFICE	38	74 216	4,814	32	37	808	224 0	Coding Diven	26	1987 2	2827 ACE	ACBL-HE	2 4	80	5	89	80	100	3854 3	3242 64	6484 2.5	3.3	\$ 1,312.43	2.43 \$ 205.33	es ·	1,517.75 \$	1,089.73 \$	\$ 1,200.00	\$ (751.39)
6095 - OFFICE, 6093 - O FFICE	2 255	98 88	7,486	387	75	529	145 0	Cooling Diven	8	9 9821	6190 ACI	ACBLHE	2 4		2	92	37	72	3888	3437 68	6874 2.5	5.7	\$ 1,312.43	2.43 \$ 334.15	es.	1,646.58 \$	1,089.73 \$	\$ 1,200.00	\$ (623.16)
6099 - OFFICE, 6101 - O FFICE, 6097 - OFFICE	8	709	11,241	537	8	88	218 0	Coding Diven	66	19#	92.97 ACE	ACBLHE	3 4	12	9	04	37 1	#	3 8843	3437 103	10311 2.5	5.7	\$ 1,507.40	7.40 \$ 334.15	es.	1,841.55 \$	1,089.73 \$	\$ 1,800.00	\$ (1,028.18)
6103 - OFFICE	2 284	288	19,773	111	82	245	150 Ver	antilation Driven	22	542 16	1923.1 ACI	ACBLHE	1 10	10	4x10	08	994	5 99	11 6276	17192 171	17192 5.37	. 3	\$ 1,759.98	9.98 \$ 334.15	es.	2,094.13 \$	1,507.40 \$	\$ 1,500.00	\$ (913.27)
6106 - OFFICE, 6108 - O FFICE	33	718	4,851	8 8	88	\$18	0 922	Cooling Driven	88	2008	2842 ACE	ACBLHE	2 4		2	8	8	100	38	3242 64	6484 2.5	3.3	\$ 1,312.43	2.43 \$ 205.33	v>	1,517.75 \$	1,089.73 \$	\$ 1,200.00	\$ (751.99)
6109 - OFFICE, 6107 - OFFICE, 6105 - OFFICE		1,426	31,789	π,	9	×	239 Ver	entilation Driven	07	¥98	30926 ACI	ACBL-HE	e0 e0	75	4x10	62	502	615 1	18505	95G 286	28689 4.46	2.7	\$ 2,064.71	4.71 \$ 334.15	es.	2,398.86 \$	1,507.40 \$	\$ 3,600.00	\$ (2,708.54)
6111 - OFFICE, 6113 - OFFICE	2 274	158	18,528	\$	88	225	156 Ver	nijarion Driven	83	562 17	7965 ACE	ACBL-HE	2 10	8	4x7	8	50.	340	1184 9	9704 194	19408 5.37	4.5	\$ 1,759.98	3.34.15	es.	2,094.13 \$	1,312.43 \$	\$ 3,000.00	\$ (2,218.30)
6112- OFFICE, 6114- OFFICE .	2 23	238	2,920	75.	83	88	136	Cooling Diven	88	1210	1711 ACE	ACBL-HE	2 4		25	8	8	22	Z 8221	27.05 54	5410 2.5	3.6	\$ 1,069.73	9.73 \$ 206.33	es.	1,275.06 \$	1,089.73 \$	\$ 1,200.00	\$ (994.68)
)) BN D48 - GSAP D48	102 3,375	8,890	198,195	25,338	1 2009	131220	36342 Ver	nilation Driven	11 11	131220 66	66975 ACI	ACBL-HE 1	17 10	0.21	4x10	8	294	7905 2	27447 17	17192 2922	292264 5.37	2	\$ 2,502.25	2.25 \$ 334.15	es.	2,836.40 \$	2,502.25 \$	\$ 25,500.00	\$ (25,166.85)
6120 - PRE PCR	5	57 88	7,748	1,299	311	92.29	1863 Ver	nilation Driven	311	6726	1022 P	POBL	4	4			0	0	1022 2	2138 210	2138 2.8		\$ 1,312.43	2.43 \$ 334.15	es.	1,646.58 \$	1,312.43 \$	\$ 600.00	\$ (285.85)
6124 - BL2+ VIRAL PREP	22	222	10,077	1,689	405	8748	2423 Ver	nijarion Driven	405	8748	13.29 Pr	POBL	4	4			0	0	1329 2	2138 210	2138 2.8		\$ 1,507.40	7.40 \$ 334.15	es.	1,841.55 \$	1,507.40 \$	\$ 600.00	\$ (285.85)
6128 - TISSUE CULTURE	6 211	827	16,192	1,267	8	¥028	2272 Ver	nijarion Driven	380	2008	7988 ACI	ACBL-HE	- 00		4x10	02	502	202	11764 9	98 88	9563 4.46	2.7	\$ 1,507.40	7.40 \$ 334.15	es.	1,841.55 \$	1,312.43 \$	\$ 1,200.00	\$ (670.88)
6133 - LAB DESKS	2 4	112 429	855,6	æ	8	788	0 701	Cooling Driven	22	475 9	9063 ACI	ACBLHE	1 10	9	4x7	8	65	61	.6	9704 971	9704 5.37	4.5	\$ 1,507.40	7.40 \$ 334.15	es.	1,841.55 \$	1,089.73 \$	\$ 1,500.00	\$ (728.18)
6135 - LAB DESKS, 6137 - LAB DESKS	6 277	7 510	11,373	332	75	292	285	Coding Diven	98	1210 10	10164 ACE	ACBL-HE	2 6	12	4x10	99		160	5 7167	5435 108	10870	•	\$ 1,507.40	7.40 \$ 334.15	∞	1,841.55 \$	1,069.73 \$	\$ 1,800.00	\$ (1,028.18)
6139 - LAB DESKS	3 14	141 476	10,609	264	82	487	135 0	Coaling Diven	75	2030 8	8578 ACI	ACBL-HE	1 10	10	4x7	8	1021	0.1	6937 9	9704 970	9704 5.37	4.5	\$ 1,507.40	7.40 \$ 334.15	es.	1,841.55 \$	1,089.73 \$	\$ 1,500.00	\$ (728.18)
6141 - MEETING	7 13	131 556	12,404	812	41	21.8	243 0	Cooling Diven	136	8002	9466 ACI	ACBLHE	1 10	10	4x7	99	1 0/1	0.21	8732 9	9704 970	9704 5.37	4.5	\$ 1,507.40	7.40 \$ 334.15		1,841.55 \$	1,089.73 \$	\$ 1,500.00	\$ (728.18)
6143 - MEDIUM CONFERENCE	9 18	183 620	13,824	1,418	25	1225	339	Coaling Diven	237	5119 8	87.04 ACI	ACBL-HE	1 10	10	4x10	09	283 7	283	17741 12	12859 128	12859 5.37	3.3	\$ 1,507.40	7.40 \$ 334.15	es.	1,841.55 \$	1,312.43 \$	\$ 1,500.00	\$ (970.88)
6145 - BREAK AREA, UNAMED SPACE NEXT TO 6145	15 301	1,063	23,704	3,763	88	2015	0 228	Coding Diven	629	13586 10	10118 ACE	4CBL-HE	2 10	30	4x7	8	170	340	16300 9	9704 194	19408 5.37	4.5	\$ 2,084.71	4.71 \$ 334.15	es.	2,386.86 \$	1,312.43 \$	\$ 3,000.00	\$ (1,913.57)
7001 - BREAK AREA	23 574	1,307	29,142	7,175	178	3844	1064	Coaling Driven	1199 2	25888 3	3243 Pi	PCBL	1 6	9			0	0	3243 3	3207 328	3207 2.8	•	\$ 2,064.71	4.71 \$ 334.15	es.	2,338.86 \$	2,064.71 \$	\$ 900.00	\$ (565.85)
7003 - OPEN OFFICE 7	3,776	76 5,023	111,983	15,104	1 10	13050	3614 0	Cooling Diven	2525 5	54540 57	57443 ACI	ACBL-HE	5 10	09 0	5	02	465 2	2325 6	11 11	17192 859	85960 2.5	2.7	\$ 2,502.25	2.25 \$ 334.15	es.	2,836.40 \$	2,502.25 \$	\$ 7,500.00	\$ (7,165.85)
701 - MEDIUM CONFERENCE	86	1,581	35,253	2282	114	2464	0 0	Coaling Diven	381	0528	27024 ACI	ACBLHE	2 10		4x10	8	99	330	15165 17	17192 343	34384 5.37	2	\$ 2,286.07	5.07 \$ 334.15	es.	2,620.22 \$	1,759.38 \$	\$ 3,000.00	\$ (2,139.76)
7015 - OFFICE, 7017 - OFFICE, 7019 - OFFICE	ж г	383 1,219	27,173	838	88	982	218	Coaling Driven	8	1944	25229 ACI	ACBL-HE	9	85	20	8	8	405	18425 7	7748 23244	351	3.6	\$ 2,064.71	4.71 \$ 334.15	es.	2,386.86 \$	1,507.40 \$	\$ 2,700.00	\$ (1,808.54)
7025 - OFFICE, 7027 - OFFICE	2 25	255 812	18,112	357	74	23	145 0	Cooling Driven	09	1236	16816 ACE	ACBLHE	2 8	9	4x10	8	791	¥2	11761	EZ1 1688	17982 4.46	3.6	\$ 1,759.98	9.38 \$ 334.15	es.	2,094.13 \$	1,312.43 \$	\$ 2,400.00	\$ (1,618.30)

Nathaniel J. Mooney | Mechanical | Dr. William Bahnfleth | Final Report

7031 - SMALL CONFERENCE		181	15,827	1,122	88	1212	88	Coding Driven	88	1907	11766	ACBLHE	-	60	00	4x10 80	275	275	7886	11284	11284	4.46	2 %	1,507.40 \$	\$ 334.15 \$	\$ 1,841.55	so.	1,312.43 \$ 1,	1,200.00 \$	(670.88)
7045 - R&D	-£	1,510 5,659	39 126,165	11,336	2718	58709	16260	Ventilation Driven	2718	58709	67456	AOBLHE	9	6	8	4x10 80	465	2790	65901	17192	103152	5.37	2	2,502.25 \$	\$ 334.15 \$	\$ 2,836.40	∞	2,502.25 \$ 9,	\$ 00:000'6	(8,665.85)
7055 - ION DETECTION	श्र 	1,132 2,496	55,655	8,498	2038	44012	12189	Ventilation Driven	3038	44012	11642	ACBLHE	35	10	8	4x10 80	465	5252	5435	17192	09658	5.37	2	2,502.25 \$	\$ 334.15 \$	\$ 2,836.40	so.	2,502.25 \$ 7,	3 00:005'2	(7,165.85)
7057 - BREAKING RM		248 853	19,012	1,862	9#	3642	2870	Ventilation Driven	9#	396	9370	ACBLHE	2	10	82	4x7 50	170	340	11668	9704	19408	5.37 4	\$ \$	1,759.98 \$	\$ 334.15 \$	\$ 2,094.13	so.	1,312.43 \$ 3,	3000:00	(2,218.30)
7059 - GOWNING RM		218 793	17,671	1,637	385	8476	2347	Ventiation Driven	330	8476	9196	ACBLHE	1	10	0/1	4x10 80	465	465	1291	17192	17192	5.37	2 8	1,507.40 \$	\$ 334.15 \$	\$ 1,841.55	s	1,507.40 \$ 25,	25,500.00 \$	(25,165.85)
7065-ILLUMINA	18 -,	1,831 5,223	3 116,435	13,746	3236	71189	19716	Ventilation Driven	3236	71189	42746	ACBLHE	00	10	021	4x10 80	465	3720	36083	17192	137536	5.37	2 %	2,502.25 \$	\$ 334.15 \$	\$ 2,836.40	es.	2,502.25 \$ 25,	25,500.00 \$	(25,165.85)
7075 - SAMPLE PREP	3,	3,326 6,682	2 148,963	3 24,970	2887	128315	38814	Ventilation Driven	2887	128315	19648	ACBLHE	22	10	027	4x10 60	283	9779	14481	12859	282898	5.37 3	ss s	2,502.25 \$	\$ 334.15 \$	\$ 2,836.40	so.	2,502.25 \$ 33,	\$ 00'000'88	(32,665.85)
7085 - CLEAN SAMPLE 2	8	3,254	H 72,556	6,862	3200	69120	19143	Ventilation Driven	3300	69120	3436	ACBLHE	e	6	021	4x10 80	465	1395	42424	17192	51576	5.37	2 %	2,502.25 \$	\$ 334.15 \$	\$ 2,836.40	so.	2,064.71 \$ 25,	25,500.00 \$	(24,728.31)
7095 - CLEAN SAMPLE 1	7,	1,373 4,925	5 109,793	10,308	4000	86400	23829	Ventilation Driven	4000	86400	23383	ACBLHE	10	10	021	4x10 80	465	2325	59573	171 92	09658	5.37	2 %	2,502.25 \$	\$ 334.15 \$	\$ 2,836.40	es.	2,502.25 \$ 25,	25,500.00 \$	(25,165.85)
7105 - SINGLE CELL PCR	5	1,662	2 37,052	3,709	88	19207	5319	Ventiation Driven	88	19207	17845	ACBLHE	2	10	8	4x10 80	465	026	16964	17192	34384	5.37	2	2,286.07 \$	\$ 334.15 \$	\$ 2,620.22	so.	1,759.98 \$ 3,	3,000,000,8	(2,139.76)
7115-812	-	240 812	18,114	1,802	432	1538	28.88	Ventiation Driven	735	9331	8783	ACBLHE	2	10	8	4x10 60	283	999	2888	12859	25718	5.37 3	SS SS	1,759.98 \$	\$ 334.15 \$	\$ 2,094.13	so.	1,507.40 \$ 3,	3,000.000,8	(2,413.27)
7119-GOWNING RM	-	242 816	18,202	1,817	85	80%	9092	Ventiation Driven	85	80%	8793	ACBLHE	2	10	8	4x10 60	283	999	5976	12859	25718	5.37 3	SS SS	1,759.98 \$	\$ 334.15 \$	\$ 2,094.13	es.	1,507.40 \$ 3,	3,000,000,8	(2,413.27)
7121 - SM.A.L. CONFERENCE	6	188 599	13,350	1,457	88	1289	346	Coding Driven	244	0220	807.8	ACBLHE	1	10	10	4x10 60	283	283	12.27	12859	12859	5.37 3	33	1,507.40 \$	\$ 334.15 \$	3 1,841.55	\$	1,312.43 \$ 1,	\$ 00:005,1	(970.88)
8008 - OFFICE, 8010 - OFFICE, 8012 - OFFICE	e 8	334 216	4,814	581	37	808	777	Coding Driven	<i>7</i> 6	1987	2827	ACBLHE	3	4	12	5 40	37	111	1142	3437	10311	2.5 5	5.7 \$	1,312.43 \$	\$ 205.33 \$	\$ 1,517.75	s	1,089.73 \$ 1,	1,800.00 \$	(1,351.98)
8009 - OFFICE, 8007 - OFFICE, 8011 - OFFICE	8	490 1,411	1 31,451	685	47	1005	278	Coding Driven	115	7484	28967	ACBLHE	3	10	30	4x7 50	170	210	20435	9704	29112	5.37 4	4.5 \$	2,064.71 \$	\$ 334.15 \$	\$ 2,398.86	s	1,507.40 \$ 4,	4,500.00 \$	(3,608.54)
8013 - OFFICE	2 2	209 916	3 20,415	111	23	487	135	Ventiation Driven	82	189	19928	ACBLHE	2	9	12	4x10 80	202	404	11689	8568	17136	3.51	2 \$	1,759.98 \$	\$ 334.15 \$	\$ 2,094.13	s	1,507.40 \$ 1,	1,800.00 \$	(1,213.27)
8014-TISSUE CULTURE ROOM		252 867	19,338	1,514	197	9738	27.14	Ventiation Driven	159	9738	9641	ACBLHE	1	10	10	4x10 80	465	465	1626	17192	17192	5.37	2 8	1,759.98 \$	\$ 334.15 \$	\$ 2,094.13	\$	1,507.40 \$ 1,	\$ 00:005,1	(913.27)
8015 - SM.A.L. CONFERENCE	= 7	223 974	1 21,704	1,728	8	1493	414	Coding Driven	589	27/29	15462	AOBLHE	2	80	16	4x10 40	147	294	15354	8991	17982	4.46 3	3.6 \$	1,759.98 \$	\$ 334.15 \$	\$ 2,094.13	s	1,312.43 \$ 2,	2,400.00 \$	(1,618.30)
8025 - BSP PRE LAB	88	3,160 10,317	17 230,025	23,724	2688	122861	34027	Ventilation Driven	***	122861	107164	ACBLHE	20	10	200	4x10 80	465	9300	29145	17192	343840	5.37	2	2,502.25 \$	\$ 334.15 \$	\$ 2,836.40	s,	2,502.25 \$ 30,	30,000.00 \$	(29,665.85)
8028-RTSROOM	5	489 982	21,901	3,671	236	5102	1413	Coding Driven	614	13362	9639	ACBLHE	2	10	8	4x10 80	465	930	1813	17192	34384	5.37	2	1,759.98 \$	\$ 334.15 \$	\$ 2,094.13	v	1,759.98 \$ 3,	3,000.00	(2,665.85)
8029 - BSP POST PCR	=	350 1,588	35,396	2,628	900	19440	5384	Veribion Diver	06	19440	15956	ACBLHE	2	10	20	4x10 80	465	930	15308	171 92	34384	5.37	2	2,286.07 \$	\$ 334.15 \$	\$ 2,620.22	s	1,739.98 \$ 3,	3,000.00	(2,139.76)
8033 - LAB DESKS		174 158	3,512	989	88	109	167	Coaling Driven	116	2506	1006	ACBLHE	-	-4	4	5 70	133	125	812	5967	5967	25 2	2.7 \$	1,069.73 \$	\$ 205.33 \$	\$ 1,275.06	s,	1,089.73 \$	8 00:00	(394.68)
8035-1.AB DESKS	4	38 186	3,683	982	8	8	178	Cooling Driven	88	2138	1554	ACBLHE	-	4	4	5 70	125	125	88	5967	2967	25 2	27 \$	1,069.73 \$	\$ 205.33 \$	\$ 1,275.06	es.	1,069.73 \$	\$ 00:009	(394.63)
8037 - LAB DESKS		311	6,933	25	88	22	08	Cooling Driven	7	206	9709	ACBLHE	2	4		29	37	74	5335	3437	6874	2.5 5	5.7 \$	1,312.43 \$	\$ 334.15 \$	\$ 1,646.58	es.	1,089.73 \$ 1,	1,200.00 \$	(623.16)

8009 - LAB DESKS	4	210 1,682	37,494	088	× ×	827		Coaling Driven 140	3054	34470 ACBLHE	HE 2	00	16	4x10 8	88	927	21813	13909	27818	977	2	2,286.07 \$ 334.15	334.15	2,620.22	\$ 1,507.40	\$ 2,400.00	(1,287.18)
8059 - LAB MANAGERS	e.	389	2 6,504	55	37 78	22		Cooling Driven 73	1577 4927	Z7 ACBLHE	3 3	4	12	85	8	114	4042	27.05	8115	2.5	3.6	1,312.43 \$	\$ 205.33 \$	1,517.75 \$	\$ 1,089.73	\$ 1,800.00	(1,351.98)
8061 - PROJECT MANAGERS OFFICE	2	242 214	4 4,774	828	23 49	496 137		Cooling Driven 57	1231 3543	43 POBL	1	9	9		0	0	3543	3207	3207	2.8	۰,	1,312.43 \$	\$ 206.33 \$	1,517.75 \$	\$ 1,089.73	\$ 900.00	\$ (461.99)
8065 - POST PCR GAP LAB	135 4,4	4,451 12,701	01 283,155	33,416 8	8012 1730	173055 47929		enilaion Driven 8012	173055 110	110100 ACBLHE	H H	10	110	4x10 8	99 08	5115	172671	17192	189112	5.37	2	2,502.25 \$	\$ 334.15 \$	2,836.40 \$	\$ 2,502.25	\$ 16,500.00	(16,165.85)
8075 - PRE PCR WHOLE GENOME	8	746 2,205	25 49,160	5,601	1343 290	29004 8033	>	entilation Driven 1343	29004 20156	56 ACBLHE	7 #	œ	83	4x10 44	40 147	88	36458	8991	35964	4.46	3.6	2,502.25 \$	\$ 334.15 \$	2,836.40	\$ 1,507.40	\$ 4,800.00	(3,471.00)
8085 - PRE PCR EXPRESSION	6	312 981	21,861	2,342 5	962 121	12131 3360	Ver.	olaton Driven 562	12131 9731	31 ACBLHE	4E 2	60	9	4x10 8	88	827	6180	13909	27818	4.46	2	1,759.98 \$	\$ 334.15 \$	2,094.13 \$	\$ 1,507.40	\$ 2,400.00	\$ (1,813.27)
8086 - LAB SUPPORT	. ნ	133 267	7 5,957	886	21 46	460 127		Cooling Driven 167	3607 2350	50 PCBL	7	9	9		0	0	2350	3207	3207	2.8	• <i>></i>	1,312.43 \$	\$ 206.33 \$	1,517.75	\$ 1,089.73	\$ 900.00	8 (461.98)
8095 - PRE PCR LOWPLEX	8 8	3,356	74,826	7,185	271 372	37208 103	103G5 Vernilai	ion Driven 1723	37.208 376	37618 ACBLHE	* *	10	9	4x10 8	98	1860	34650	17192	68768	5.37	2	2,502.25 \$	\$ 334.15 \$	2,836.40 \$	\$ 2,286.07	\$ 6,000.00	\$ (5,449.67)
8097 - OFFICE	-	195	15,163	æ	94	111		Cooling Driven 46	141	14169 ACBLHE	# -	60	60	4x10 68	977	28	10281	10718	10718	977	3.3	1,507.40 \$	\$ 334.15 \$	1,841.55	\$ 1,312.43	\$ 1,200.00	\$ (670.88)
8099 - OFFICE, 8103 - OFFICE	2	260 907	7 20,216	38	88	533 148		Cooling Driven 61	1318 188	8898 ACBLHE	4E 2	ø	12	25	85 35	27.0	14384	77.48	15496	3.51	3.6	1,759.98 \$	\$ 334.15 \$	2,094.13 \$	\$ 1,312.43	\$ 1,800.00	(1,018.30)
9009 - OFFICE, 9007 - O FRICE, 9011 - OFFICE	e e	1,361	30,335	95	37 80	800 222		Cooling Driven 91	1966 28370	70 ACBLHE	。 第	00	75	4x10 58	711 09	8	18866	9664	28992	977	3.6	2,064.71 \$	\$ 334.15 \$	2,388.86 \$	\$ 1,507.40	\$ 3,600.00	\$ (2,708.54)
9013 - OFFICE	2 2	276 1,033	3 23,040	808	88	157		Cooling Driven 52	1123 21917	17 ACBLHE	4E 2	ø	12	4x10 8	80 202	404	14314	8568	17136	3.51	2 %	2,064.71 \$	\$ 334.15 \$	2,388.86 \$	\$ 1,507.40	\$ 1,800.00	\$ (908.54)
9014 - OFFICE, 9016 - OFFICE, 9018 - OFFICE	3	871 TZE	3996	754	31 671	14 186		Cooling Driven 76	1642 2354	54 ACBLHE	3 3	4	12	25	40 37	ŧ	1598	3437	10311	2.5	5.7 \$	1,089.73 \$	\$ 206.33 \$	1,275.06 \$	\$ 1,089.73	\$ 1,800.00	(1,594.68)
9017 - OFFICE, 9015 - O FFICE	3	1,011	11 22,529	5	8	622 175		Cooling Diven 72	1555 20974	74 ACBLHE	# 5	•	16	4x7 6l	60 173	88	15056	89.28	17856	977	33	2,064.71 \$	\$ 334.15 \$	2,398.86	\$ 1,312.43	\$ 2,400.00	1 \$ (1,313.57)
9021 - OFFICE, 9019 - O FFICE	2	260 815	18,165	38	88	203 148		Cooling Driven 61	1318 16848	H8 ACBLHE	#E 2	∞	16	4x10 44	40 147	表	11815	8991	17982	4.46	3.6	1,759.98 \$	\$ 334.15 \$	2,094.13 \$	\$ 1,312.43	\$ 2,400.00	(1,618.30)
9022 - OFFICE, 9008 - O FFICE	2 3	336 184	4 4,106	470	32 68	191		Coding Diven 79	1706 2399	99 ACBLHE	HE 2	4	8	5 50	88	92	2464	27.05	9410	2.5	3.6	1,089.73 \$	\$ 206.33 \$	1,275.06	\$ 1,089.73	\$ 1,200.00	(897.68)
9023 - OFFICE, 9029 - O FFICE	3	355 1,628	36,298	169	27 26	728 202		Coding Diven 726	1562 206	20617 ACBLHE	4E 2	88	16	4x10 81	98	922	20617	13909	81842	4.6	2 \$	2,286.07 \$	\$ 334.15 \$	2,620.22 \$	\$ 1,507.40	\$ 2,400.00	(1,287.18)
9026 - OFFICE, 9024 - O FFICE, 9020 - O FFICE	5	967 099	865'9	352	51 110	1108 307		Cooling Driven 126	772 3877	77 POBL	33	4	12		0 .	0	3877	2138	6414	2.8	• <i>></i>	1,312.43 \$	\$ 206.33 \$	1,517.75	\$ 1,089.73	\$ 1,800.00	(1,351.98)
9028 - OFFICE, 9030 - OFFICE	2 3	316 173	3 3,861	Z#	99	648 180		Coding Diven 74	1598 2263	63 ACBLHE	HE 2	4	80	5 28	20 37	74	2263	3437	6874	2.5	5.7 \$	1,089.73 \$	\$ 205.33 \$	1,275.06 \$	\$ 1,089.73	\$ 1,200.00	(994.68)
9031 - LARGE CONFERENCE	22	433 2,419	53,937	3,356	134 286	2888 803		Coding Driven 561	12118 41819	19 ACBLHE	4E 4	00	33	4x10 7/	70 205	820	32.25	9563	38252	4.46	2.7 \$	2,502.25 \$	\$ 334.15 \$	2,836.40 \$	\$ 1,759.98	\$ 4,800.00	8 (3,723.58)
9047 - OFFICE, 9049 - O FFICE	2 2	270 230	5,124	378	18 88	153		Coding Driven 63	1361	3763 ACBLHE	HE 2	4	60	5 28	20 37	74	3256	3437	6874	2.5	5.7 \$	1,312.43 \$	\$ 206.33 \$	1,517.75 \$	\$ 1,089.73	\$ 1,200.00	(751.38)
9048 - OFFICE, 9050 - OFFICE	2 2	260 142	3,177	300	88	533 148		Coding Diven 61	1318 186	1859 ACBLHE	HE 2	4	60	5 28	20 37	74	1579	3437	6874	2.5	5.7 \$	1,089.73 \$	\$ 205.33 \$	1,275.06 \$	\$ 1,089.73	\$ 1,200.00	(994.68)
9063 - OFFICE	2	255 1,443	32,163	107	25	523 145	5 Vertila	ion Driven 24	523 31640	40 ACBLHE	4E 2	ø	13	4x10 8	992	225	20672	10597	21194	237	2	2,064.71 \$	\$ 334.15 \$	2,386.86 \$	\$ 1,507.40	\$ 1,800.00	\$ (908.54)
9067 - OFFICE, 9055 - OFFICE	2 2	1,584	35,316	288	98 98	155		Cooling Driven 64	1382 338	3393 ACBLHE	4E 2	4	60	5 2	20 37	74	337.17	3437	6874	2.5	5.7 \$	2,286.07 \$	\$ 334.15 \$	2,620.22	\$ 1,089.73	\$ 1,200.00	\$ 350.49

Mechanical Dr. William Bahnfleth

Final Report

9KB2- EPHYS ROOM		352	2 8,062	186,1	326	8669	881	Venilaion Diven	324	9669	1063	PCBL	-	4	7		0	0	108	2138	2138	78	∽	1,312.43	\$ 334.15 \$	1,646.58	\$ 1,312.43	00000 \$ 1	\$ 00	(265.85)
9166 - MCROSCOPY WAGING	9	378	8,420	1,411	88	9067	2004	Venilaion Diven	8	9067	Ħ	PCBL	-	4	4		0	0	₽	2138	2138	78	<i>∞</i>	1,312.43	1,312.49 \$ 334.15 \$	1,646.58 \$	\$ 1,312.43 \$	\$ 60000	\$ 00	(265.85)
900-812 +TISSUE CULTURE ROOM	13	421	18,856	3,161	题	999	4533	Venilaion Diven	题	1638	2487	ROBL	-	9	9		0	0	2487	3207	3207	2.08		1,739.98	\$ 334.15 \$	2,094.13 \$	\$ 1,507.40	00000	\$ 00	(313.27)
9078- TISSUE CULTURE ROOM	.«	380	4 21,487	7 1,682	709	10886	3015	Venilation Diven	709	10886	10901	ACBL-HE	-	9	10	4x10 80	\$8 	器	13819	14087	14087	5.37	2 \$	1,739.38	\$ 334.15 \$	2,094.13	\$ 1,312.43	1,50000	\$ 00	(718.30)
907-TISSUE CULTURE ROOM	5	1,819	9 40,547	7 2,907	118	18818	5212	Venilaion Diven	871	18818	21729	AOBL-HE	2	···	16	4x10 80	88	922	74986	13909	27818	97	2 8	2,286.07 (\$ 334.15 \$	2,620.22 \$	\$ 1,507.40 \$	\$ 2,400.00	\$ 00	(1,287.18)
9078 - PROCEDURE ROOM	7	274 450	10,032	2 1,682	403	80/8	2412	Venilaion Diven	904	8708	1333	ROBL	-	7	4		0	0	盩	2138	2138	78		1,507.40	\$ 334.15 \$	1,841.55	\$ 1,507.40	\$ 60000	\$ 00	(266.85)
9083 - LJB DESKS, 9081 - LJB DESKS, 9079 - LJB DESKS	6	460 574	12,786	1,840	74	1590	94	Coaling Driven	88	999	6134	PCBL	2	9	12		0	0	6134	3207	6414	78	es.	1,507.40	1,507.40 \$ 334.15 \$	1,841.55 \$	\$ 1,312.43 \$	1,80000	\$ 00	(1,270.88)
9087 - LJB DESKS, 9085 - LJB DESKS	6	157	4 10,122	2 1,728	69	1493	413	Coaling Driven	88	76739		PCBL	2	4			0	0	3880	2138	9.724	78	<i>∽</i>	1,507.40	\$ 334.15 \$	1,841.55	\$ 1,312.43	1,20000	\$ 00	(670.88)
SNS30 Br1 - 6806	6	432 867	19,337	7 1,728	69	1493	413	Coaling Driven	88	7773	13094	ACBL-HE	2	· · ·	16 4	4x10 40	147	葱	12966	1668	17982	977	3.6	1,759.38	\$ 334.15 \$	2,094.13 \$	\$ 1,312.43	\$ 2,400.00	\$ 00	(1,618.30)
9883 - OFFICE	-	809	18,036		70	LO ₃	##	Venilaion Diven	8	LTA*	17610	ACBL-HE	-	0,	01	4x10 80	288	88	11923	12859	12859	5.37	33 8	1,739.38	\$ 334.15 \$	2,094.13 \$	\$ 1,312.43 \$	1,50000	\$ 00	(718.30)
9099 - OFFICE, 9065 - OFFICE, 9097 - OFFICE	e2	339	30,425		88	88	722	Coaling Driven	83	5008	28416	AOBL-HE	e.	9	85	2 20	133	\$\$	21677	24/2	#00Z	3.51	.s 98	2,064.71	\$ 334.15 \$	2,388.86	\$ 1,507.40	1 \$ 2,700.00	\$ 00	(1,808.54)
9101 - BREJK	# 7	270 1,042	92'22 27	5 2,700	84	1808	901	Coaling Driven	<i>19</i>	3142	13494	AOBL-HE	+	10	10 4	4x10 80	994 (99#	13192	17192	17192	2.37	2 8	2,064.71	2,064.71 \$ 334.15 \$	2,398.86 \$	\$ 1,507.40 \$	1,500.00	\$ 00	(608.54)
906: OFFICE	-	\$5 \$2	2 10,309	200	4	758	25	Coaling Driven	88	357	28	AOBL-HE	-	9	9	98	窓	\$5	2857	8411	21/48	3.55	\$3 \$	1,507.40	1,507.40 \$ 334.15 \$	1,841.55 \$	\$ 1,089.73	\$ 30000	<u>\$</u>	(128.18)
9107- SMALL CONFERENCE	#	219 880	19,171	1,697	89	1466	406	Coaling Driven	757	6134	13037	ACBL-HE	+	10	10 4	4x10 80	1465	994	9127	17192	17192	2.37	2 \$	1,739.98	\$ 334.15 \$	2,094.13	\$ 1,507.40	\$ 1,500.00	\$ 00	(913.27)
₩	2134 114	114,409 302,286	6,733,559	59 605,292	17837	7 378800	104911	1 Coaling Driven	101182	2186531	45530ZT																		\$ (545,040.41)	40.41)

Nathaniel J. Mooney | Mechanical | Dr. William Bahnfleth

Final Report

Performance Data - (2 Pipe) Cooling

ACBL-HE, 2 way, 24 inch - (2 pipe) Cooling

Unit			Air Flow	Plenum				y - 2 Pipe oling			
Length ft	Inlet Size	Nozzle Size	cfm Total (Primary)	Static Pres- sure in.	Sound NC		Transfer Efficiency		Head Loss	Induction Ratio	Throw ft
						Coil Btu/h	Btu/h cfm	Total Btu/h	ft H₂O		
	5		13	0.20		1541	119	1794		6.2	0-1-4
	5	10	22	0.50	-	2084	95	2512		6.2	1-3-8
	5		29	0.80	-	2423	84	2983		6.2	2-4-11
	5		17	0.20	-	1567	94	1891		5.7	1-1-5
	5	20	28	0.50	-	2269	81	2814		5.7	2-4-10
- 1	5		37	0.80	18	2724	74	3437		5.7	3-6-13
	5		20	0.20	-	1523	76	1914		5.3	1-2-6
- 1	5	30	35	0.50	-	2363	68	3035		5.3	2-5-11
- 1	5		45	0.80	21	2927	64	3811		5.3	4-7-14
- 1	5		32	0.20		1971	62	2594		4.5	1-3-9
	5	40	54	0.50	22	2822	52	3874		4.5	4-8-14
4 ft	5		71	0.80	28	3378	48	4760	2.50	4.5	7-10-16
	5		38	0.20		1965	52	2705		3.6	1-3-9
ļ	5	50	65	0.50	23	2863	44	4134		3.6	4-8-14
	5		86	0.80	29	3439	40	5113		3.6	7-10-17
	5		50	0.20		2268	45	3242		3.3	2-5-11
	5	60	85	0.50	27	3106	37	4761		3.3	6-10-16
- 1	5		112	0.80	33	3633	32	5814		3.3	8-13-18
- 1	5		57	0.20	15	2161	38	3270		2.7	2-4-11
- 1	5	70	98	0.50	27	2984	30	4892		2.7	6-9-16
- 1	5		128	0.80	33	3475	27	5967		2.7	8-12-18
ļ	5		80	0.20	19	2354	29	3912		2	3-6-13
- 1	5	80	135	0.50	30	3309	25	5937		2	7-11-17
	4x10		178	0.80	34	3928	22	7393		2	9-14-19
ļ	5		20	0.20		2375	119	2764		6.2	0-1-4
ļ	5	10	34	0.50		3172	93	3836		6.2	1-3-11
ļ	5		45	0.80	20	3665	81	4542		6.2	2-5-14
-	5		26	0.20		2498	96	3005		5.7	1-2-6
ļ	5	20	44	0.50	18	3557	80	4419		5.7	2-4-13
ļ	5		58	0.80	25	4231	72	5368		5.7	3-8-17
ļ	5		31	0.20	-	2312	75	2916		5.3	1-2-8
ļ	5	30	53	0.50	21	3492	66	4524		5.3	2-6-14
ļ	5		69	0.80	27	4230	61	5575		5.3	4-9-17
- 1	5		48	0.20	15	2884	60	3819		4.5	2-3-11
ļ	5	40	82	0.50	27	4069	50	5665		4.5	4-10-18
6 ft	4x10		108	0.80	30	4804	44	6906	3.51	4.5	8-13-20
٠	5		60	0.20	17	3067	51	4235	0.01	3.6	2-4-12
ļ	5	50	103	0.50	29	4347	42	6352		3.6	5-10-18
ļ	5		135	0.80	35	5120	38	7748		3.6	8-13-21
ļ	5		70	0.20	19	2957	42	4320		3.3	2-4-13
[5	60	120	0.50	31	4009	33	6345		3.3	6-11-19
[4x7		157	0.80	36	4629	29	7686		3.3	10-15-22
[5		93	0.20	22	3448	37	5259		2.7	3-6-15
[5	70	157	0.50	34	4581	29	7638		2.7	7-13-20
[4x10		206	0.80	37	5261	26	9272		2.7	11-16-23
[5		120	0.20	25	3380	28	5717		2	3-6-16
	4x10	80	202	0.50	32	4635	23	8568		2	8-13-21
	4x10		266	0.80	39	5418	20	10597		2	12-17-24

Performance Data - (2 Pipe) Cooling

ACBL-HE, 2 way, 24 inch - (2 pipe) Cooling

Unit			Airf For-	Dianum				y - 2 Pipe			
Unit Length	Inlet	Nozzle	Airf Fow cfm Total	Plenum Static Pres-	Sound			oling		Induction	Throw
ft	Size	Size	(Primary)	sure in.	NC	Coil Btu/h	Transfer Efficiency Btu/h cfm	Total Btu/h	Head Loss ft H ₂ O	Ratio	ft
	5		27	0.20	-	3136	116	3662		6.2	0-1-4
	5	10	46	0.50	19	4134	89	5034		6.2	1-3-13
	5		61	0.80	25	4735	78	5922		6.2	2-6-17
	5		36	0.20	-	3379	94	4080		5.7	1-2-7
	5	20	61	0.50	23	4692	77	5880		5.7	2-5-16
	5	1	80	0.80	29	5491	69	7048		5.7	4-8-1
	5		41	0.20		2986	73	3784		5.3	1-2-8
	5	30	71	0.50	25	4459	63	5842		5.3	3-6-1
	5		93	0.80	31	5349	58	7160		5.3	4-10-2
	5		66	0.20	19	3844	58	5129		4.5	2-4-1
	4x7	40	112	0.50	30	5276	47	7456		4.5	5-11-2
0.6	4x10		147	0.80	35	6129	42	8991		4.5	8-15-2
8 ft	5		80	0.20	20	3877	48	5435	4.46	3.6	2-4-1
	5	50	134	0.50	32	5314	40	7923		3.6	5-11-2
	4x10		177	0.80	36	6218	35	9664		3.6	8-16-2
	5		100	0.20	24	4190	42	6137	İ	3.3	2-5-1
	4x7	60	173	0.50	35	5560	32	8928	İ	3.3	7-14-2
	4x10		226	0.80	39	6318	28	10718	İ	3.3	12-18-
	5		122	0.20	27	4277	35	6652		2.7	3-6-1
	4x10	70	205	0.50	34	5572	27	9563		2.7	7-14-3
	4x10		270	0.80	40	6345	24	11602		2.7	13-19-
	5		163	0.20	34	4420	27	7594		2	3-7-1
	4x10	80	275	0.50	37	5931	22	11284		2	9-16-3
	4x10		363	0.80	43	6842	19	13909		2	14-19-
	5		34	0.20	-	3832	113	4494		6.2	0-1-4
	5	10	58	0.50	22	4986	86	6119		6.2	1-3-1
	5		77	0.80	28	5669	74	7169		6.2	2-6-1
	5		44	0.20		3993	91	4849		5.7	1-2-
	5	20	75	0.50	25	5486	73	6949	İ	5.7	2-5-1
	5		99	0.80	32	6380	64	8307		5.7	4-8-2
	5		53	0.20	16	3767	71	4799		5.3	1-2-
	5	30	90	0.50	28	5427	60	7179		5.3	3-6-2
	5		118	0.80	34	6430	54	8728		5.3	4-10-
	5		81	0.20	22	4541	56	6118		4.5	2-4-1
	4x10	40	140	0.50	31	6190	44	8916		4.5	5-11-
	4x10		183	0.80	37	7103	39	10666		4.5	8-17-
10 ft	5		100	0.20	24	4716	47	6663	5.37	3.6	2-4-1
	4x7	50	170	0.50	34	6395	38	9704		3.6	5-11-2
	4x10		225	0.80	39	7399	33	11779		3.6	9-18-2
	5		125	0.20	28	4999	40	7433		3.3	2-5-1
	4x10	60	215	0.50	36	6505	30	10691		3.3	7-15-2
	4x10		283	0.80	42	7349	26	12859		3.3	12-21-
	5		151	0.20	33	5112	34	8051		2.7	3-6-1
	4x10	70	260	0.50	37	6619	25	11681		2.7	7-17-2
	4x10	1	342	0.80	43	7454	22	14112		2.7	13-21-
	4x10		210	0.20	29	5467	26	9555		2	3-7-2
	4x10	80	355	0.50	41	7176	20	14087		2	9-18-2
	4x10	~	465	0.80	47	8139	18	17192		2	16-22-

Performance Data - (4 Pipe) Cooling

ACBL-HE, 2 way, 24 inch - (4 pipe) Cooling

Unit			Air Flow	Plenum				y - 4 Pipe oling			
Length ft	Inlet Size	Nozzle Size	cfm Total (Primary)	Static Pres- sure in.	Sound NC	Coil Btu/h	Transfer Efficiency Btu/h cfm	Total Btu/h	Head Loss ft H ₂ O	Induction Ratio	Throw ft
	5		13	0.20		1401	108	1654	111111111111111111111111111111111111111	6.2	0-1-4
	5	10	22	0.50	_	1895	86	2323		6.2	1-3-8
	5		29	0.80	_	2202	76	2763		6.2	2-4-11
	5		17	0.20	_	1425	86	1748		5.7	1-1-5
	5	20	28	0.50		2062	74	2607		5.7	2-4-10
	5		37	0.80	18	2477	68	3189		5.7	3-6-13
	5		20	0.20	_	1384	69	1776		5.3	1-2-6
	5	30	35	0.50	_	2148	62	2820		5.3	2-5-11
	5		45	0.80	21	2661	59	3545		5.3	4-7-14
	5		32	0.20	_	1792	56	2415		4.5	1-3-9
	5	40	54	0.50	22	2566	48	3617		4.5	4-8-14
	5		71	0.80	28	3071	43	4453	2.00	4.5	7-10-16
4 ft	5		38	0.20		1787	47	2526	2.00	3.6	1-3-9
	5	50	65	0.50	23	2603	40	3874		3.6	4-8-14
	5		86	0.80	29	3127	36	4801		3.6	7-10-17
	5		50	0.20		2062	41	3036		3.3	2-5-11
	5	60	85	0.50	27	2824	33	4479		3.3	6-10-16
	5		112	0.80	33	3303	29	5484		3.3	8-13-18
	5		57	0.20	15	1964	34	3074		2.7	2-4-11
	5	70	98	0.50	27	2712	28	4620		2.7	6-9-16
	5		128	0.80	33	3159	25	5651		2.7	8-12-18
	5		80	0.20	19	2140	27	3698		2	3-6-13
	5	80	135	0.50	30	3008	22	5636		2	7-11-17
	4x10		178	0.80	34	3571	20	7036		2	9-14-19
	5		20	0.20		2159	108	2548		6.2	0-1-4
	5	10	34	0.50		2884	85	3548		6.2	1-3-11
	5		45	0.80	20	3332	74	4208		6.2	2-5-14
	5		26	0.20		2271	87	2777		5.7	1-2-6
	5	20	44	0.50	18	3234	73	4096		5.7	2-4-13
	5		58	0.80	25	3846	66	4983		5.7	3-8-17
	5		31	0.20	-	2102	68	2705		5.3	1-2-8
	5	30	53	0.50	21	3174	60	4206		5.3	2-6-14
	5		69	0.80	27	3845	56	5191		5.3	4-9-17
	5		48	0.20	15	2622	55	3557		4.5	2-3-11
	5	40	82	0.50	27	3699	45	5295		4.5	4-10-18
	4x10		108	0.80	30	4367	40	6470	2.00	4.5	8-13-20
6 ft	5		60	0.20	17	2788	46	3956	2.80	3.6	2-4-12
	5	50	103	0.50	29	3951	38	5957		3.6	5-10-18
	5		135	0.80	35	4654	34	7282		3.6	8-13-21
	5		70	0.20	19	2688	38	4051		3.3	2-4-13
	5	60	120	0.50	31	3644	30	5981		3.3	6-11-19
l	4x7		157	0.80	36	4208	27	7265		3.3	10-15-22
l	5		93	0.20	22	3134	34	4945		2.7	3-6-15
	5	70	157	0.50	34	4165	27	7222		2.7	7-13-20
	4x10		206	0.80	37	4783	23	8793		2.7	11-16-23
	5		120	0.20	25	3073	26	5409		2	3-6-16
	4x10	80	202	0.50	32	4214	21	8146		2	8-13-21
	4x10		266	0.80	39	4925	19	10104		2	12-17-24

Performance Data - (4 Pipe) Cooling

ACBL-HE, 2 way, 24 inch - (4 pipe) Cooling

Unit			Air Flow	Plenum		Capacity - 4 Pipe	Cooling				
Length	Inlet	Nozzle	cfm Total	Static Pres-	Sound			ling		Induction	Throw
ft	Size	Size	(Primary)	sure in.	NC	Coil Btu/h	Transfer Efficiency Btu/h cfm	Total Btu/h	Head Loss ft H ₂ O	Ratio	ft
	5		27	0.20		2851	106	3376		6.2	0-1-4
	5	10	46	0.50	19	3758	81	4658		6.2	1-3-13
	5		61	0.80	25	4304	71	5492		6.2	2-6-17
	5		36	0.20	-	3072	85	3773		5.7	1-2-7
	5	20	61	0.50	23	4266	70	5453		5.7	2-5-16
	5		80	0.80	29	4992	62	6549		5.7	4-8-19
	5		41	0.20	-	2714	66	3513		5.3	1-2-8
	5	30	71	0.50	25	4054	57	5436		5.3	3-6-17
	5		93	0.80	31	4863	52	6673		5.3	4-10-20
	5		66	0.20	19	3495	53	4780		4.5	2-4-14
	4x7	40	112	0.50	30	4796	43	6977		4.5	5-11-21
	4x10	10	147	0.80	35	5572	38	8434		4.5	8-15-24
8 ft	5		80	0.20	20	3525	44	5082	3.56	3.6	2-4-14
	5	50	134	0.50	32	4831	36	7440		3.6	5-11-21
	4x10		177	0.80	36	5653	32	9099		3.6	8-16-24
	5		100	0.20	24	3809	38	5756		3.3	2-5-16
	4x7	60	173	0.50	35	5055	29	8423		3.3	7-14-23
	4x10		226	0.80	39	5744	25	10144		3.3	12-18-26
	5		122	0.20	27	3888	32	6263		2.7	3-6-17
	4x10	70	205	0.50	34	5066	25	9057		2.7	7-14-23
	4x10	/0	270	0.80	40	5769	21	11025		2.7	13-19-2
	5		163	0.20	34	4018	25	7192		2.7	3-7-18
	4x10	80	275	0.50	37	5391	20	10745		2	9-16-24
	4x10	00	363	0.80	43	6220	17	13287		2	14-19-2
	5		34	0.20		3484	102	4146		6.2	0-1-4
	5	10	58	0.50	22	4532	78	5665		6.2	1-3-13
	5	10	77	0.80	28	5154	67	6653		6.2	2-6-19
	5		44	0.20		3630	82	4486		5.7	1-2-6
	5	20	75	0.50	25	4988	66	6450		5.7	2-5-17
	5	20	99	0.80	32	5800	59	7727		5.7	4-8-21
	5		53	0.20	16	3424	65	4456		5.7	1-2-8
		30			28		55				
	5 5	30	90 118	0.50 0.80	34	4934 5846	50	6686 8143		5.3 5.3	3-6-20 4-10-23
	_									-	
	5 4x10	40	81 140	0.20 0.50	22 31	4129	51 40	5706 8353		4.5 4.5	2-4-14
		40				5627					5-11-23
10 ft	4x10		183	0.80	37	6457	35	10020	4.29	4.5	8-17-26
	5	E0.	100	0.20	24	4287	43	6234		3.6	2-4-15
	4x7	50	170	0.50	34	5813	34	9123		3.6	5-11-23
	4x10		225	0.80	39	6726	30	11107		3.6	9-18-27
	5	60	125	0.20	28	4545	36	6979		3.3	2-5-19
	4x10	60	215	0.50	36	5914	28	10100		3.3	7-15-25
	4x10		283	0.80	42	6681	24	12191		3.3	12-21-2
	5	70	151	0.20	33	4647	31	7587		2.7	3-6-19
	4x10	70	260	0.50	37	6018	23	11080		2.7	7-17-26
	4x10		342	0.80	43	6776	20	13435		2.7	13-21-3
	4x10		210	0.20	29	4970	24	9058		2	3-7-21
	4x10	80	355	0.50	41	6524	18	13435		2	9-18-27
	4x10		465	0.80	47	7399	16	16452		2	16-22-3

Appendix I: Chilled Water Pump Selection

	SW. OBA MAM, BET	0	0
	tee, MAIN RED. 144	0	0
	TEE, MAIN NO RED	920	0
	нэмана зэт	30.1	3037
ŢĮ.	49. STD ELL	0	0
KOJVALINI LINGTER, FT	30.SLD EFF	141.6	0
	90. FONG BYD EFF	0	0
	(FOLL PORT)	0	0
	YJARATTUB	0	0
	Y-TYPE STRAINER	0	0
	SMING CHECK	0	0
	GLOBEVALVE	0	0
	BYJAY BTAÐ	0	0.7

0	0	
	(
))	
220	1	
30.1	303	
0	0	
141.6	0	
0	1.66	
1	0.7	
177	7.75	
0	0	
0	0	
0	0	
0	0.7	

### WEIGHT 1 1 1 1 1 1 1 1 1	PROJECTIO					8 60			PECENTBY/CLUNE = 100 %	<u></u>	록	3	ш.	P		≥e			9	8	VISCOSITY=		133	1.30 qrs							
### ### ##############################				3		or(ATT)	<u>-</u>		"	巣	图	2	ايت			ᅟᅩᅵ															
More Assessment Company Comp											\$	当	ا ہے ا			<u> </u>		83													
2474 1 1 9 1 52 697 429 7774 230 54 344 Note 1 1 1 9 1 52 724 429 00 7774 230 54 344 SHEPFACTOR - 676 239 Note 1 1 1 9 1 52 724 429 60 7774 230 54 344 SHEPFACTOR - 676 239 Note 1 54 Note 1 310 CPRUISCHARGE SUBTOTALS - 7352 499 60 232 239 54 239 TOTALISCHARGE FULL - 330 SHEPFACTOR - 676 239 Note 1 54 Note 1 310 TOTALISCHARGE FULL - 328 TOTALISCHARGE FULL - 328 TOTALISCHARGE FULL - 328 TOTALISCHARGE FULL - 328 TOTALISCHARGE FULL - 328 TOTALISCHARGE FULL - 328		(Map) Mora			VELOCITY (FPS)	HEYNOLDS NO. (R€)	ROTOAR NOITOIRE	PER 100FT	MECITEUS Fepignet, Cortol Vane, Boj	∃VJAV ∃TAÐ										TEE, MAIN RED. 142	гематн (FT.)	(EII)	FENGTH (FT) WISC: HEMS EGON:	нтаизт. упрататот				NAME TO THE		MISC. WOL. (GAL)	
1 1 2 1 2 6807 4820 777 230 54 344	PE 6													1			-	4		1								-	-		
SUCTION SURTOTALS = 6654 420 00 177.4 280 54 344 SHEVFACTOR = 0% = 34 SHEVFACTOR = 0% = 34 SHEVFACTOR = 0% = 34 TOTAL SLCTIONHEAD = 37.9 SHEVFACTOR = 0% = 3.0 SHEVFACTOR = 0% = 3.0 SHEVFACTOR = 0% = 3.0 SHEVFACTOR = 0% = 3.0 TOTAL DISCHARGE SURTOTALS = 7362 4970 6.0 2992 288 54 288 TOTAL DISCHARGE SURTOTALS = 7362 4970 6.0 2992 288 54 288 TOTAL SKITHAVILIE = 2.8		25	S	3		244203	-	_							<u> </u>	6	_				6917	2		1837					- 86		
SATISTICAD BEATON SABTOTALS = 6654 4620 00 1774 280 54 344 SATISTICAD BEATON = 3.4 SATISTICAD BEATON = 3.4 Note: 1 1 1 9 1 52 724 4620 60 2694 288 54 288 SATISTICAD BEATON = 0.0 SATENYFACTOR = 0.0 TOTAL PARTEN = 0.0 TOTAL PARTEN = 0.0 TOTAL STITA		-	S	25		3904	Note 1	_		-							_				37			37			Note,	_			
SAFETYFACTOR = 608 = 34 STATCLEUDGHBATION = 37.9 TOTAL SICTION HEAD = 37.9 SHETYFACTOR = 608 = 328 Note1 1 1 1 1 1 1 1 1 1										ł	ł		l	, ~	달	喜	男		≧	==s	6954	4820	00	_					86	80	
STATULICUD REWATION																					1	募				"	33	<u>+</u>			
2474 1 1 1 9 1 52 7274 4600 2034 238 54 Note1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																							S			¥10×		Ē		₽	
244																								TOTAL	SICTION	室	_	9 FT.			
2474 1 1 9 1 52 7244 620 2034 238 Note: 54 Note: 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																															
NOTE 1 1 2 1 1 1 1 1 1 1		5	S	3		244203		_					_	_		6	_				7214	2		2034			28		- 00 - 00 - 00		
DISCHARGE SUBTOTALS = 736.2 497.0 6.0 299.2 29.0 5.4 SHENYFACTOR = 0% = SHENYFACTOR = 0% = CONDECTARGE HEADERS TOTAL DISCHARGE HEADERS TOTAL PROPERTY TOT		-	o o	25		3904	Note 1	_		-		ļ	_	_	7		_				#18	23	99		Note 1	, C3			77	1	
SAFETYFACTOR = TW = CPRUDECTARGEREAMINA = CPRUDECTARGEREAMINA = TOTALONGARGEREAD = TOTALO													_	볼	∰	吳	男		₫	=S	7362	497.0	6.0	_					0.1	0:0	
CPRUKSTANGEHEATICN= TOTAL DKSTANGEHEAD= TOTAL PLANPHEAD= TOTAL PLANPHEAD=																				l		募	IYF#			11	3,	0 FT.			
TOTALD	nthisdeat	al defe	룉			10034	30to 200F.															0	量							₽	
	eSch 40s	<u>8</u>	ت.	-83		opportie																	₽	200	38	鞷		- W			
	asvalido	romyse	E	93																					LP.	量		6 FI.	ı		
	ksvalidor	yforsie	217	0.74																					OTALSK			154	丟		

Nathaniel J. Mooney

Mechanical

Dr. William Bahnfleth

Final Report

04/03/13

162